The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The four natural boundary problems for the weighted form Laplacians acting on polynomial differential forms in the -dimensional Euclidean ball are solved explicitly. Moreover, an algebraic algorithm for generating a solution from the boundary data is given in each case.
The goal of this paper is to prove the first and second order optimality conditions for some control problems governed by semilinear elliptic equations with pointwise control constraints and finitely many equality and inequality pointwise state constraints. To carry out the analysis we formulate a regularity assumption which is equivalent to the first order optimality conditions. Though the presence of pointwise state constraints leads to a discontinuous adjoint state, we prove that the optimal...
The goal of this paper is to prove the first and second order
optimality conditions for some control problems governed by
semilinear elliptic equations with pointwise control constraints
and finitely many equality and inequality pointwise state
constraints. To carry out the analysis we formulate a regularity
assumption which is equivalent to the first order optimality
conditions. Though the presence of pointwise state constraints
leads to a discontinuous adjoint state, we prove that the optimal
control...
In this paper we introduce and analyze new mixed finite volume methods for second order elliptic problems
which are based on H(div)-conforming approximations for the vector variable and
discontinuous approximations for the scalar variable.
The discretization is fulfilled by combining the ideas of the traditional finite volume box method and
the local discontinuous Galerkin method.
We propose two different types of methods, called Methods I and II, and show that they have distinct advantages
over...
The paper deals with error estimates and lower bound approximations of the Steklov eigenvalue problems on convex or concave domains by nonconforming finite element methods. We consider four types of nonconforming finite elements: Crouzeix-Raviart, , and enriched Crouzeix-Raviart. We first derive error estimates for the nonconforming finite element approximations of the Steklov eigenvalue problem and then give the analysis of lower bound approximations. Some numerical results are presented to...
Low-order nonconforming Galerkin methods will be analyzed for second-order
elliptic equations subjected to Robin, Dirichlet, or Neumann boundary
conditions. Both simplicial and rectangular elements will be considered in two
and three dimensions. The simplicial elements will be based on P1, as for
conforming elements; however, it is necessary to introduce new elements in the
rectangular case. Optimal order error estimates are demonstrated in all cases
with respect to a broken norm in H1(Ω)...
Approximation of nonhomogeneous boundary conditions of Dirichlet and Neumann types is suggested in solving boundary value problems of elliptic equations by the finite element method. Curved triangular elements are considered. In the first part of the paper the convergence of the finite element method is analyzed in the case of nonhomogeneous Dirichlet problem for elliptic equations of order , in the second part of the paper in the case of nonhomogeneous mixed boundary value problem for second order...
Currently displaying 1 –
20 of
51