The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We study the linearized water-wave problem in a bounded domain (e.g.a finite pond of water) of , having a cuspidal boundary irregularity created by a submerged body. In earlier publications the authors discovered that in this situation the spectrum of the problem may contain a continuous component in spite of the boundedness of the domain. Here, we proceed to impose and study radiation conditions at a point of the water surface, where a submerged body touches the surface (see Fig. 1). The radiation...
We study the linearized water-wave problem in a bounded domain (e.g. a
finite pond of water) of , having a cuspidal boundary
irregularity created by a submerged body. In earlier publications the
authors discovered that
in this situation the spectrum of the problem may contain a
continuous component in spite of the boundedness of the domain.
Here, we proceed to impose and study radiation conditions at a point
of the water surface, where
a submerged body touches the surface
(see Fig. 1)....
The purpose of this paper is to provide a method of reduction of some problems concerning families of linear operators with domains to a problem in which all the operators have the same domain . To do it we propose to construct a family of automorphisms of a given Banach space X having two properties: (i) the mapping is sufficiently regular and (ii) for t ∈ . Three effective constructions are presented: for elliptic operators of second order with the Robin boundary condition with a parameter;...
We prove boundedness and continuity for solutions to the Dirichlet problem for the equation
where the left-hand side is a Leray-Lions operator from into with , is a Carathéodory function which grows like and is a finite Radon measure. We prove that renormalized solutions, though not globally bounded, are Hölder-continuous far from the support of .
Regularity results for transmission problems in domains with (outgoing) cuspidal points are considered. We prove in some special but generic situations that the solution is piecewise in .
Currently displaying 1 –
20 of
42