The search session has expired. Please query the service again.

Displaying 541 – 560 of 1373

Showing per page

Hölder continuity of solutions of second-order non-linear elliptic integro-differential equations

Guy Barles, Emmanuel Chasseigne, Cyril Imbert (2011)

Journal of the European Mathematical Society

This paper is concerned with the Hölder regularity of viscosity solutions of second-order, fully non-linear elliptic integro-differential equations. Our results rely on two key ingredients: first we assume that, at each point of the domain, either the equation is strictly elliptic in the classical fully non-linear sense, or (and this is the most original part of our work) the equation is strictly elliptic in a non-local non-linear sense we make precise. Next we impose some regularity and growth...

Homogenization of a monotone problem in a domain with oscillating boundary

Dominique Blanchard, Luciano Carbone, Antonio Gaudiello (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We study the asymptotic behaviour of the following nonlinear problem: { - div ( a ( D u h ) ) + | u h | p - 2 u h = f in Ω h , a ( D u h ) · ν = 0 on Ω h , . in a domain Ωh of n whose boundary ∂Ωh contains an oscillating part with respect to h when h tends to ∞. The oscillating boundary is defined by a set of cylinders with axis 0xn that are h-1-periodically distributed. We prove that the limit problem in the domain corresponding to the oscillating boundary identifies with a diffusion operator with respect to xn coupled with an algebraic problem for the limit fluxes.

Homogenization of highly oscillating boundaries and reduction of dimension for a monotone problem

Dominique Blanchard, Antonio Gaudiello (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We investigate the asymptotic behaviour, as ε → 0, of a class of monotone nonlinear Neumann problems, with growth p-1 (p ∈]1, +∞[), on a bounded multidomain Ω ε N (N ≥ 2). The multidomain ΩE is composed of two domains. The first one is a plate which becomes asymptotically flat, with thickness hE in the xN direction, as ε → 0. The second one is a “forest" of cylinders distributed with ε-periodicity in the first N - 1 directions on the upper side of the plate. Each cylinder has a small...

Homogenization of some nonlinear problems with specific dependence upon coordinates

P. Courilleau, S. Fabre, J. Mossino (2001)

Bollettino dell'Unione Matematica Italiana

Questo articolo considera una successione di equazioni differenziali a derivate parziali non lineari in forma di divergenza del tipo - div Q ϵ G x , N ϵ u = f ϵ , in un dominio limitato Ω dello spazio n -dimensionale; Q ϵ = Q ϵ x e N ϵ = N ϵ x sono matrici con coefficenti limitati, N ϵ e è invertibile e la sua matrice inversa R ϵ ha anche coefficenti limitati. La non linearità è dovuta alla funzione G = G x , ξ ; la condizione di crescita, la monotonicità e le ipotesi di coercitività sono modellate sul p -Laplaciano, 1 < p < , ed assicurano l'esistenza di una soluzione...

Improved estimates for the Ginzburg-Landau equation : the elliptic case

Fabrice Bethuel, Giandomenico Orlandi, Didier Smets (2005)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

We derive estimates for various quantities which are of interest in the analysis of the Ginzburg-Landau equation, and which we bound in terms of the G L -energy E ε and the parameter ε . These estimates are local in nature, and in particular independent of any boundary condition. Most of them improve and extend earlier results on the subject.

Infinitely many positive solutions for the Neumann problem involving the p-Laplacian

Giovanni Anello, Giuseppe Cordaro (2003)

Colloquium Mathematicae

We present two results on existence of infinitely many positive solutions to the Neumann problem ⎧ - Δ p u + λ ( x ) | u | p - 2 u = μ f ( x , u ) in Ω, ⎨ ⎩ ∂u/∂ν = 0 on ∂Ω, where Ω N is a bounded open set with sufficiently smooth boundary ∂Ω, ν is the outer unit normal vector to ∂Ω, p > 1, μ > 0, λ L ( Ω ) with e s s i n f x Ω λ ( x ) > 0 and f: Ω × ℝ → ℝ is a Carathéodory function. Our results ensure the existence of a sequence of nonzero and nonnegative weak solutions to the above problem.

Infinitely many solutions for a class of semilinear elliptic equations in R N

Francesca Alessio, Paolo Caldiroli, Piero Montecchiari (2001)

Bollettino dell'Unione Matematica Italiana

Si considera una classe di equazioni ellittiche semilineari su R N della forma - Δ u + u = a x u p - 1 u con p > 1 sottocritico (o con nonlinearità più generali) e a x funzione limitata. In questo articolo viene presentato un risultato di genericità sull'esistenza di infinite soluzioni, rispetto alla classe di coefficienti a x limitati su R N e non negativi all'infinito.

Currently displaying 541 – 560 of 1373