The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 561 – 580 of 1373

Showing per page

Infinitely many weak solutions for a non-homogeneous Neumann problem in Orlicz--Sobolev spaces

Ghasem A. Afrouzi, Shaeid Shokooh, Nguyen T. Chung (2019)

Commentationes Mathematicae Universitatis Carolinae

Under a suitable oscillatory behavior either at infinity or at zero of the nonlinear term, the existence of infinitely many weak solutions for a non-homogeneous Neumann problem, in an appropriate Orlicz--Sobolev setting, is proved. The technical approach is based on variational methods.

Integrability for vector-valued minimizers of some variational integrals

Francesco Leonetti, Francesco Siepe (2001)

Commentationes Mathematicae Universitatis Carolinae

We prove that the higher integrability of the data f , f 0 improves on the integrability of minimizers u of functionals , whose model is Ω | D u | p + ( det ( D u ) ) 2 - f , D u + f 0 , u d x , where u : Ω n n and p 2 .

Interpolation theorem for the p-harmonic transform

Luigi D'Onofrio, Tadeusz Iwaniec (2003)

Studia Mathematica

We establish an interpolation theorem for a class of nonlinear operators in the Lebesgue spaces s ( ) arising naturally in the study of elliptic PDEs. The prototype of those PDEs is the second order p-harmonic equation d i v | u | p - 2 u = d i v . In this example the p-harmonic transform is essentially inverse to d i v ( | | p - 2 ) . To every vector field q ( , ) our operator p assigns the gradient of the solution, p = u p ( , ) . The core of the matter is that we go beyond the natural domain of definition of this operator. Because of nonlinearity our arguments...

Currently displaying 561 – 580 of 1373