The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 361 –
380 of
551
We characterize geometric properties of Banach spaces in terms of boundedness of square functions associated to general Schrödinger operators of the form ℒ = -Δ + V, where the nonnegative potential V satisfies a reverse Hölder inequality. The main idea is to sharpen the well known localization method introduced by Z. Shen. Our results can be regarded as alternative proofs of the boundedness in H¹, and BMO of classical ℒ-square functions.
We consider continuous dependence of solutions on the right hand side for a semilinear operator equation Lx = ∇G(x), where L: D(L) ⊂ Y → Y (Y a Hilbert space) is self-adjoint and positive definite and G:Y → Y is a convex functional with superquadratic growth. As applications we derive some stability results and dependence on a functional parameter for a fourth order Dirichlet problem. Applications to P.D.E. are also given.
We prove an estimate of the kind , where , is the scattering amplitude related to the compactly supported potential at a fixed energy level const., , and is a suitably defined norm.
We investigate problems connected to the stability of the well-known Pohoˇzaev obstruction. We generalize results which were obtained in the minimizing setting by Brezis and Nirenberg [2] and more recently in the radial situation by Brezis and Willem [3].
We develop new techniques for proving uniform elliptic and parabolic Harnack inequalities
on weighted Riemannian manifolds. In particular, we prove the stability of the Harnack
inequalities under certain non-uniform changes of the weight. We also prove necessary and
sufficient conditions for the Harnack inequalities to hold on complete non-compact
manifolds having non-negative Ricci curvature outside a compact set and a finite first
Betti number or just having asymptotically...
This article is devoted to the study of a perturbation with a viscosity term
in an elliptic equation involving the p-Laplacian operator and related to
the best contant problem in Sobolev inequalities in the critical case.
We prove first that this problem, together with the equation, is stable
under this perturbation, assuming some conditions on the datas. In the
next section, we show that the zero solution is strongly isolated in some
sense, among the space of the solutions. Actually, we end the...
This paper presents a
stabilization technique for approximating transport
equations. The key idea consists in introducing an artificial diffusion
based on a two-level decomposition of the approximation space.
The technique is proved to have stability and convergence
properties that are similar to that of the streamline diffusion method.
Currently displaying 361 –
380 of
551