Appendice à l'exposé : «Weak bloch property and weight estimates for elliptic operators»
This paper addresses some results on the development of an approximate method for computing the acoustic field scattered by a three-dimensional penetrable object immersed into an incompressible fluid. The basic idea of the method consists in using on-surface differential operators that locally reproduce the interior propagation phenomenon. This approach leads to integral equation formulations with a reduced computational cost compared to standard integral formulations coupling both the transmitted...
This paper addresses some results on the development of an approximate method for computing the acoustic field scattered by a three-dimensional penetrable object immersed into an incompressible fluid. The basic idea of the method consists in using on-surface differential operators that locally reproduce the interior propagation phenomenon. This approach leads to integral equation formulations with a reduced computational cost compared to standard integral formulations coupling both the transmitted...
The thermoelastic stresses created in a solid phase domain in the course of solidification of a molten ingot are investigated. A nonlinear behaviour of the solid phase is admitted, too. This problem, obtained from a real situation by many simplifications, contains a moving boundary between the solid and the liquid phase domains. To make the usage of standard numerical packages possible, we propose here a fixed-domain approximation by means of including the liquid phase domain into the problem (in...
Let be an odd function of a class such that and increases on . We approximate the positive solution of on with homogeneous Dirichlet boundary conditions by the solution of on with adequate non-homogeneous Dirichlet conditions. We show that the error tends to zero exponentially fast, in the uniform norm.
Let f be an odd function of a class C2 such that ƒ(1) = 0,ƒ'(0) < 0,ƒ'(1) > 0 and increases on [0,1]. We approximate the positive solution of Δu + ƒ(u) = 0, on with homogeneous Dirichlet boundary conditions by the solution of on ]0,L[2 with adequate non-homogeneous Dirichlet conditions. We show that the error uL - u tends to zero exponentially fast, in the uniform norm.