Displaying 701 – 720 of 737

Showing per page

Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities of small diameter

Michael S. Vogelius, Darko Volkov (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider solutions to the time-harmonic Maxwell's Equations of a TE (transverse electric) nature. For such solutions we provide a rigorous derivation of the leading order boundary perturbations resulting from the presence of a finite number of interior inhomogeneities of small diameter. We expect that these formulas will form the basis for very effective computational identification algorithms, aimed at determining information about the inhomogeneities from electromagnetic boundary measurements. ...

Asymptotic models for scattering from unbounded media with high conductivity

Houssem Haddar, Armin Lechleiter (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We analyze the accuracy and well-posedness of generalized impedance boundary value problems in the framework of scattering problems from unbounded highly absorbing media. We restrict ourselves in this first work to the scalar problem (E-mode for electromagnetic scattering problems). Compared to earlier works, the unboundedness of the rough absorbing layer introduces severe difficulties in the analysis for the generalized impedance boundary conditions, since classical compactness arguments are no...

Asymptotic properties of a ϕ -Laplacian and Rayleigh quotient

Waldo Arriagada, Jorge Huentutripay (2020)

Commentationes Mathematicae Universitatis Carolinae

In this paper we consider the ϕ -Laplacian problem with Dirichlet boundary condition, - div ϕ ( | u | ) u | u | = λ g ( · ) ϕ ( u ) in Ω , λ and u | Ω = 0 . The term ϕ is a real odd and increasing homeomorphism, g is a nonnegative function in L ( Ω ) and Ω N is a bounded domain. In these notes an analysis of the asymptotic behavior of sequences of eigenvalues of the differential equation is provided. We assume conditions which guarantee the existence of stationary solutions of the system. Under these rather stringent hypotheses we prove that any extremal is both a minimizer...

Asymptotic properties of ground states of scalar field equations with a vanishing parameter

Vitaly Moroz, Cyrill B. Muratov (2014)

Journal of the European Mathematical Society

We study the leading order behaviour of positive solutions of the equation - Δ u + ϵ u - | u | p - 2 u + | u | q - 2 u = 0 , x N , where N 3 , q > p > 2 and when ϵ > 0 is a small parameter. We give a complete characterization of all possible asymptotic regimes as a function of p , q and N . The behavior of solutions depends sensitively on whether p is less, equal or bigger than the critical Sobolev exponent 2 * = 2 N N - 2 . For p < 2 * the solution asymptotically coincides with the solution of the equation in which the last term is absent. For p > 2 * the solution asymptotically coincides...

Asymptotic Property of Eigenvalues and Eigenfunctions of the Laplace Operator in Domain with a Perturbed Boundary

Khelifi, Abdessatar (2005)

Fractional Calculus and Applied Analysis

2000 Mathematics Subject Classification: 35J05, 35C15, 44P05In this paper, we consider the variations of eigenvalues and eigenfunctions for the Laplace operator with homogeneous Dirichlet boundary conditions under deformation of the underlying domain of definition. We derive recursive formulas for the Taylor coefficients of the eigenvalues as functions of the shape-perturbation parameter and we establish the existence of a set of eigenfunctions that is jointly holomorphic in the spatial and boundary-variation ...

Asymptotics for quasilinear elliptic non-positone problems

Zuodong Yang, Qishao Lu (2002)

Annales Polonici Mathematici

In the recent years, many results have been established on positive solutions for boundary value problems of the form - d i v ( | u ( x ) | p - 2 u ( x ) ) = λ f ( u ( x ) ) in Ω, u(x)=0 on ∂Ω, where λ > 0, Ω is a bounded smooth domain and f(s) ≥ 0 for s ≥ 0. In this paper, a priori estimates of positive radial solutions are presented when N > p > 1, Ω is an N-ball or an annulus and f ∈ C¹(0,∞) ∪ C⁰([0,∞)) with f(0) < 0 (non-positone).

Asymptotics for the minimization of a Ginzburg-Landau energy in n dimensions

Paweł Strzelecki (1996)

Colloquium Mathematicae

We prove that minimizers u W 1 , n of the functional E ( u ) = 1 / n | u | n d x + 1 / ( 4 n ) ( 1 - | u | 2 ) 2 d x , ⊂ n , n ≥ 3, which satisfy the Dirichlet boundary condition u = g on for g: → S n - 1 with zero topological degree, converge in W 1 , n and C l o c α for any α<1 - upon passing to a subsequence k 0 - to some minimizing n-harmonic map. This is a generalization of an earlier result obtained for n=2 by Bethuel, Brezis, and Hélein. An example of nonunique asymptotic behaviour (which cannot occur in two dimensions if deg g = 0) is presented.

Currently displaying 701 – 720 of 737