Displaying 681 – 700 of 737

Showing per page

Asymptotic behaviour and numerical approximation of optimal eigenvalues of the Robin laplacian

Pedro Ricardo Simão Antunes, Pedro Freitas, James Bernard Kennedy (2013)

ESAIM: Control, Optimisation and Calculus of Variations

We consider the problem of minimising the nth-eigenvalue of the Robin Laplacian in RN. Although for n = 1,2 and a positive boundary parameter α it is known that the minimisers do not depend on α, we demonstrate numerically that this will not always be the case and illustrate how the optimiser will depend on α. We derive a Wolf–Keller type result for this problem and show that optimal eigenvalues grow at most with n1/N, which is in sharp contrast with the Weyl asymptotics for a fixed domain. We further...

Asymptotic behaviour, nodal lines and symmetry properties for solutions of superlinear elliptic equations near an eigenvalue

Dimitri Mugnai (2005)

ESAIM: Control, Optimisation and Calculus of Variations

We give the precise behaviour of some solutions of a nonlinear elliptic B.V.P. in a bounded domain when a parameter approaches an eigenvalue of the principal part. If the nonlinearity has some regularity and the domain is for example convex, we also prove a nonlinear version of Courant’s Nodal theorem.

Asymptotic behaviour, nodal lines and symmetry properties for solutions of superlinear elliptic equations near an eigenvalue

Dimitri Mugnai (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We give the precise behaviour of some solutions of a nonlinear elliptic B.V.P. in a bounded domain when a parameter approaches an eigenvalue of the principal part. If the nonlinearity has some regularity and the domain is for example convex, we also prove a nonlinear version of Courant's Nodal theorem.

Asymptotic behaviour of a class of degenerate elliptic-parabolic operators: a unitary approach

Fabio Paronetto (2007)

ESAIM: Control, Optimisation and Calculus of Variations

We study the asymptotic behaviour of a sequence of strongly degenerate parabolic equations t ( r h u ) - div ( a h · D u ) with r h ( x , t ) 0 , r h L ( Ω × ( 0 , T ) ) . The main problem is the lack of compactness, by-passed via a regularity result. As particular cases, we obtain G-convergence for elliptic operators ( r h 0 ) , G-convergence for parabolic operators ( r h 1 ) , singular perturbations of an elliptic operator ( a h a and r h r , possibly r 0 ) .

Asymptotic distribution of eigenfrequencies for damped wave equations

Johannes Sjöstrand (2000)

Journées équations aux dérivées partielles

Il est bien connu que les fréquences propres associées à un d'Alembertien amorti sont confinées dans une bande parallèle à l'axe réel. Nous rappelons l'asymptotique de Weyl pour la distribution des parties réelles des fréquences propres, nous montrons que «presque toutes» les fréquences propres appartiennent à une bande déterminée par la limite de Birkhoff du coefficient d'amortissement. Nous montrons aussi que certaines moyennes des parties imaginaires convergent vers la moyenne du coefficient...

Asymptotic formula for solutions to the Dirichlet problem for elliptic equations with discontinuous coefficients near the boundary

Vladimir Kozlov, Vladimir Maz'ya (2003)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

We derive an asymptotic formula of a new type for variational solutions of the Dirichlet problem for elliptic equations of arbitrary order. The only a priori assumption on the coefficients of the principal part of the equation is the smallness of the local oscillation near the point.

Currently displaying 681 – 700 of 737