The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We consider the following reaction-diffusion equation:
where .
In [Sugiyama, Nonlinear Anal.63 (2005) 1051–1062; Submitted; J. Differential Equations (in press)]
it was shown that
in the case of ,
the above problem (KS) is solvable globally in time for “small data”.
Moreover,
the decay of the solution (u,v) in
was proved.
In this paper, we consider
the case of “ and
small data” with any fixed
and show that
(i)
there exists a time global solution (u,v) of (KS) and
it decays to...
In this paper, we consider solutions to the following chemotaxis system with general sensitivity
Here, and are positive constants, is a smooth function on satisfying and is a bounded domain of (). It is well known that the chemotaxis system with direct sensitivity (, ) has blowup solutions in the case where . On the other hand, in the case where with , any solution to the system exists globally in time and is bounded. We present a sufficient condition for the boundedness of...
In this paper the Leray-Schauder nonlinear alternative for multivalued maps combined with the semigroup theory is used to investigate the existence of mild solutions for first order impulsive semilinear functional differential inclusions in Banach spaces.
A nonlocal model of phase separation in multicomponent systems is presented. It is derived from conservation principles and minimization of free energy containing a nonlocal part due to particle interaction. In contrast to the classical Cahn-Hilliard theory with higher order terms this leads to an evolution system of second order parabolic equations for the particle densities, coupled by nonlinear and nonlocal drift terms, and state equations which involve both chemical and interaction potential...
We study the existence of attractors for partly dissipative systems in ℝⁿ. For these systems we prove the existence of global attractors with attraction properties and compactness in a slightly weaker topology than the topology of the phase space. We obtain abstract results extending the usual theory to encompass such two-topologies attractors. These results are applied to the FitzHugh-Nagumo equations in ℝⁿ and to Field-Noyes equations in ℝ. Some embeddings between uniformly local spaces are also...
We apply functional analytical and variational methods in order to study well-posedness and qualitative properties of evolution equations on product Hilbert spaces. To this aim we introduce an algebraic formalism for matrices of sesquilinear mappings. We apply our results to parabolic problems of different nature: a coupled diffusive system arising in neurobiology, a strongly damped wave equation, and a heat equation with dynamic boundary conditions.
In this paper, we consider the existence of a pullback attractor for the random dynamical system generated by stochastic two-compartment Gray-Scott equation for a multiplicative noise with the homogeneous Neumann boundary condition on a bounded domain of space dimension n ≤ 3. We first show that the stochastic Gray-Scott equation generates a random dynamical system by transforming this stochastic equation into a random one. We also show that the existence of a random attractor for the stochastic...
In this paper we examine self-similar solutions to the system
, i = 1,…,m, , t > 0,
, i = 1,…,m, ,
where m > 1 and , to describe asymptotics near the blow up point.
We consider a system which describes the scaling limit of several chemotaxis systems. We focus on self-similarity, and review some recent results on forward and backward self-similar solutions to the system.
Currently displaying 41 –
60 of
74