The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 61 –
80 of
788
In this paper, we prove the existence of a solution for a quite general stationary compressible Stokes problem including, in particular, gravity effects. The Equation Of State gives the pressure as an increasing superlinear function of the density. This existence result is obtained by passing to the limit on the solution of a viscous approximation of the continuity equation.
The evolution Boussinesq equations describe the evolution of the temperature and velocity fields of viscous incompressible Newtonian fluids. Very often, they are a reasonable model to render relevant phenomena of flows in which the thermal effects play an essential role. In the paper we prescribe non-Dirichlet boundary conditions on a part of the boundary and prove the existence and uniqueness of solutions to the Boussinesq equations on a (short) time interval. The length of the time interval depends...
As observed by Yamazaki, the third component of the magnetic field can be estimated by the corresponding component of the velocity field in
This special volume of the ESAIM Journal, Mathematical Modelling and Numerical Analysis,
contains a collection of articles on probabilistic interpretations of
some classes of nonlinear integro-differential equations.
The selected contributions deal with a wide range of topics in applied probability theory and stochastic analysis,
with applications in a variety of scientific disciplines, including
physics, biology, fluid
mechanics, molecular chemistry, financial mathematics and bayesian statistics....
A distributed optimal control problem for evolutionary Stokes flows is studied via a pseudocompressibility formulation. Several results concerning the analysis of the velocity tracking problem are presented. Semidiscrete finite element error estimates for the corresponding optimality system are derived based on estimates for the penalized Stokes problem and the BRR (Brezzi-Rappaz-Raviart) theory. Finally, the convergence of the solutions of the penalized optimality systems as is examined.
A distributed optimal control problem for evolutionary Stokes flows is
studied via a pseudocompressibility formulation.
Several results concerning the analysis of the velocity tracking problem are
presented. Semidiscrete finite element error estimates for the corresponding
optimality system are derived based on estimates for the penalized
Stokes problem and the BRR (Brezzi-Rappaz-Raviart) theory. Finally, the
convergence of the solutions of the penalized optimality systems
as ε → 0 is examined.
...
The hydrostatic approximation of the incompressible 3D stationary
Navier-Stokes equations is widely used in oceanography and other
applied sciences. It appears through a limit process due to
the anisotropy of the domain in use, an ocean, and it is usually studied as
such.
We consider in this paper an equivalent formulation to this
hydrostatic approximation that includes Coriolis force and an additional
pressure term that comes from taking into account the
pressure in the state equation for...
The hydrostatic approximation of the incompressible 3D stationary
Navier-Stokes equations is widely used in oceanography and other
applied sciences. It appears through a limit process due to
the anisotropy of the domain in use, an ocean, and it is usually studied as
such.
We consider in this paper an equivalent formulation to this
hydrostatic approximation that includes Coriolis force and an additional
pressure term that comes from taking into account the
pressure in the state equation for...
Today engineering and science researchers routinely confront problems in mathematical modeling involving solutions techniques for differential equations. Sometimes these solutions can be obtained analytically by numerous traditional ad hoc methods appropriate for integrating particular types of equations. More often, however, the solutions cannot be obtained by these methods, in spite of the fact that, e.g. over 400 types of integrable second-order ordinary differential equations were summarized...
In this paper we analyze the stream function-vorticity-pressure method for the Stokes eigenvalue problem. Further, we obtain full order convergence rate of the eigenvalue approximations for the Stokes eigenvalue problem based on asymptotic error expansions for two nonconforming finite elements, and . Using the technique of eigenvalue error expansion, the technique of integral identities and the extrapolation method, we can improve the accuracy of the eigenvalue approximations.
Currently displaying 61 –
80 of
788