Displaying 261 – 280 of 681

Showing per page

A problem of optimal control with free initial state

Mohamed Aidene, Kahina Louadj (2012)

ESAIM: Proceedings

We are studying an optimal control problem with free initial condition. The initial state of the optimized system is not known exactly, information on initial state is exhausted by inclusions x0 ∈ X0. Accessible controls for optimization of continuous dynamic system are discrete controls defined on quantized axes. The method presented is based on the concepts and operations of the adaptive method [9] of linear programming. The results are illustrated by a fourth order problem, efficiency estimates...

A quadratic optimal control problem for a class of linear discrete distributed systems

Mostafa Rachik, Mustapha Lhous, Ouafa El Kahlaoui (2006)

International Journal of Applied Mathematics and Computer Science

A linear quadratic optimal control problem for a class of discrete distributed systems is analyzed. To solve this problem, we introduce an adequate topology and establish that optimal control can be determined though an inversion of the appropriate isomorphism. An example and a numerical approach are given.

A quasistatic bilateral contact problem with adhesion and friction for viscoelastic materials

Arezki Touzaline (2010)

Commentationes Mathematicae Universitatis Carolinae

We consider a mathematical model which describes a contact problem between a deformable body and a foundation. The contact is bilateral and is modelled with Tresca's friction law in which adhesion is taken into account. The evolution of the bonding field is described by a first order differential equation and the material's behavior is modelled with a nonlinear viscoelastic constitutive law. We derive a variational formulation of the mechanical problem and prove the existence and uniqueness result...

A quasistatic contact problem with adhesion and friction for viscoelastic materials

Arezki Touzaline (2010)

Applicationes Mathematicae

We consider a mathematical model which describes the contact between a deformable body and a foundation. The contact is frictional and is modelled by a version of normal compliance condition and the associated Coulomb's law of dry friction in which adhesion of contact surfaces is taken into account. The evolution of the bonding field is described by a first order differential equation and the material's behaviour is modelled by a nonlinear viscoelastic constitutive law. We derive a variational formulation...

A quasistatic contact problem with unilateral constraint and slip-dependent friction

Arezki Touzaline (2015)

Applicationes Mathematicae

We consider a mathematical model of a quasistatic contact between an elastic body and an obstacle. The contact is modelled with unilateral constraint and normal compliance, associated to a version of Coulomb's law of dry friction where the coefficient of friction depends on the slip displacement. We present a weak formulation of the problem and establish an existence result. The proofs employ a time-discretization method, compactness and lower semicontinuity arguments.

A quasistatic unilateral and frictional contact problem with adhesion for elastic materials

Arezki Touzaline (2009)

Applicationes Mathematicae

We consider a quasistatic contact problem between a linear elastic body and a foundation. The contact is modelled with the Signorini condition and the associated non-local Coulomb friction law in which the adhesion of the contact surfaces is taken into account. The evolution of the bonding field is described by a first order differential equation. We derive a variational formulation of the mechanical problem and prove existence of a weak solution if the friction coefficient is sufficiently small....

A quasi-variational inequality problem arising in the modeling of growing sandpiles

John W. Barrett, Leonid Prigozhin (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Existence of a solution to the quasi-variational inequality problem arising in a model for sand surface evolution has been an open problem for a long time. Another long-standing open problem concerns determining the dual variable, the flux of sand pouring down the evolving sand surface, which is also of practical interest in a variety of applications of this model. Previously, these problems were solved for the special case in which the inequality is simply variational. Here, we introduce a regularized...

A reduced model for domain walls in soft ferromagnetic films at the cross-over from symmetric to asymmetric wall types

Lucas Döring, Radu Ignat, Felix Otto (2014)

Journal of the European Mathematical Society

We study the Landau-Lifshitz model for the energy of multi-scale transition layers – called “domain walls” – in soft ferromagnetic films. Domain walls separate domains of constant magnetization vectors m α ± 𝕊 2 that differ by an angle 2 α . Assuming translation invariance tangential to the wall, our main result is the rigorous derivation of a reduced model for the energy of the optimal transition layer, which in a certain parameter regime confirms the experimental, numerical and physical predictions: The...

A refined Newton’s mesh independence principle for a class of optimal shape design problems

Ioannis Argyros (2006)

Open Mathematics

Shape optimization is described by finding the geometry of a structure which is optimal in the sense of a minimized cost function with respect to certain constraints. A Newton’s mesh independence principle was very efficiently used to solve a certain class of optimal design problems in [6]. Here motivated by optimization considerations we show that under the same computational cost an even finer mesh independence principle can be given.

A regularity result for a convex functional and bounds for the singular set

Bruno De Maria (2010)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we prove a regularity result for local minimizers of functionals of the Calculus of Variations of the type Ω f ( x , D u ) d x where Ω is a bounded open set in n , u∈ W loc 1 , p (Ω; N ), p> 1, n≥ 2 and N≥ 1. We use the technique of difference quotient without the usual assumption on the growth of the second derivatives of the function f. We apply this result to give a bound on the Hausdorff dimension of the singular set of minimizers.

A regularity theory for scalar local minimizers of splitting-type variational integrals

Michael Bildhauer, Martin Fuchs, Xiao Zhong (2007)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Starting from Giaquinta’s counterexample [12] we introduce the class of splitting functionals being of ( p , q ) -growth with exponents p q < and show for the scalar case that locally bounded local minimizers are of class C 1 , μ . Note that to our knowledge the only C 1 , μ -results without imposing a relation between p and q concern the case of two independent variables as it is outlined in Marcellini’s paper [15], Theorem A, and later on in the work of Fusco and Sbordone [10], Theorem 4.2.

Currently displaying 261 – 280 of 681