Displaying 801 – 820 of 9149

Showing per page

A posteriori error estimates for vertex centered finite volume approximations of convection-diffusion-reaction equations

Mario Ohlberger (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

This paper is devoted to the study of a posteriori error estimates for the scalar nonlinear convection-diffusion-reaction equation c t + · ( 𝐮 f ( c ) ) - · ( D c ) + λ c = 0 . The estimates for the error between the exact solution and an upwind finite volume approximation to the solution are derived in the L 1 -norm, independent of the diffusion parameter D . The resulting a posteriori error estimate is used to define an grid adaptive solution algorithm for the finite volume scheme. Finally numerical experiments underline the applicability...

A posteriori error estimates for vertex centered finite volume approximations of convection-diffusion-reaction equations

Mario Ohlberger (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper is devoted to the study of a posteriori error estimates for the scalar nonlinear convection-diffusion-reaction equation c t + · ( 𝐮 f ( c ) ) - · ( D c ) + λ c = 0 . The estimates for the error between the exact solution and an upwind finite volume approximation to the solution are derived in the L1-norm, independent of the diffusion parameter D. The resulting a posteriori error estimate is used to define an grid adaptive solution algorithm for the finite volume scheme. Finally numerical experiments underline the applicability...

A posteriori error estimates of the discontinuous Galerkin method for parabolic problem

Šebestová, Ivana, Dolejší, Vít (2010)

Programs and Algorithms of Numerical Mathematics

We deal with a posteriori error estimates of the discontinuous Galerkin method applied to the nonstationary heat conduction equation. The problem is discretized in time by the backward Euler scheme and a posteriori error analysis is based on the Helmholtz decomposition.

A Posteriori Error Estimates on Stars for Convection Diffusion Problem

B. Achchab, A. Agouzal, K. Bouihat (2010)

Mathematical Modelling of Natural Phenomena

In this paper, a new a posteriori error estimator for nonconforming convection diffusion approximation problem, which relies on the small discrete problems solution in stars, has been established. It is equivalent to the energy error up to data oscillation without any saturation assumption nor comparison with residual estimator

A posteriori error estimates with post-processing for nonconforming finite elements

Friedhelm Schieweck (2002)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

For a nonconforming finite element approximation of an elliptic model problem, we propose a posteriori error estimates in the energy norm which use as an additive term the “post-processing error” between the original nonconforming finite element solution and an easy computable conforming approximation of that solution. Thus, for the error analysis, the existing theory from the conforming case can be used together with some simple additional arguments. As an essential point, the property is exploited...

A posteriori Error Estimates with Post-Processing for Nonconforming Finite Elements

Friedhelm Schieweck (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

For a nonconforming finite element approximation of an elliptic model problem, we propose a posteriori error estimates in the energy norm which use as an additive term the “post-processing error” between the original nonconforming finite element solution and an easy computable conforming approximation of that solution. Thus, for the error analysis, the existing theory from the conforming case can be used together with some simple additional arguments. As an essential point, the property is...

A posteriori error estimation and adaptivity in the method of lines with mixed finite elements

Jan Brandts (1999)

Applications of Mathematics

We will investigate the possibility to use superconvergence results for the mixed finite element discretizations of some time-dependent partial differential equations in the construction of a posteriori error estimators. Since essentially the same approach can be followed in two space dimensions, we will, for simplicity, consider a model problem in one space dimension.

A posteriori error estimation for arbitrary order FEM applied to singularly perturbed one-dimensional reaction-diffusion problems

Torsten Linß (2014)

Applications of Mathematics

FEM discretizations of arbitrary order r are considered for a singularly perturbed one-dimensional reaction-diffusion problem whose solution exhibits strong layers. A posteriori error bounds of interpolation type are derived in the maximum norm. An adaptive algorithm is devised to resolve the boundary layers. Numerical experiments complement our theoretical results.

A Posteriori Error Estimation for Reduced Order Solutions of Parametrized Parabolic Optimal Control Problems

Mark Kärcher, Martin A. Grepl (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We consider the efficient and reliable solution of linear-quadratic optimal control problems governed by parametrized parabolic partial differential equations. To this end, we employ the reduced basis method as a low-dimensional surrogate model to solve the optimal control problem and develop a posteriori error estimation procedures that provide rigorous bounds for the error in the optimal control and the associated cost functional. We show that our approach can be applied to problems involving...

A posteriori error estimation for reduced-basis approximation of parametrized elliptic coercive partial differential equations : “convex inverse” bound conditioners

Karen Veroy, Dimitrios V. Rovas, Anthony T. Patera (2002)

ESAIM: Control, Optimisation and Calculus of Variations

We present a technique for the rapid and reliable prediction of linear-functional outputs of elliptic coercive partial differential equations with affine parameter dependence. The essential components are (i) (provably) rapidly convergent global reduced-basis approximations – Galerkin projection onto a space W N spanned by solutions of the governing partial differential equation at N selected points in parameter space; (ii) a posteriori error estimation – relaxations of the error-residual equation...

A Posteriori Error Estimation for Reduced-Basis Approximation of Parametrized Elliptic Coercive Partial Differential Equations: “Convex Inverse” Bound Conditioners

Karen Veroy, Dimitrios V. Rovas, Anthony T. Patera (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We present a technique for the rapid and reliable prediction of linear-functional outputs of elliptic coercive partial differential equations with affine parameter dependence. The essential components are (i ) (provably) rapidly convergent global reduced-basis approximations – Galerkin projection onto a space WN spanned by solutions of the governing partial differential equation at N selected points in parameter space; (ii ) a posteriori error estimation – relaxations of the error-residual equation...

A posteriori estimates for the Cahn–Hilliard equation with obstacle free energy

Ľubomír Baňas, Robert Nürnberg (2009)

ESAIM: Mathematical Modelling and Numerical Analysis

We derive a posteriori estimates for a discretization in space of the standard Cahn–Hilliard equation with a double obstacle free energy. The derived estimates are robust and efficient, and in practice are combined with a heuristic time step adaptation. We present numerical experiments in two and three space dimensions and compare our method with an existing heuristic spatial mesh adaptation algorithm.

A posteriori upper and lower error bound of the high-order discontinuous Galerkin method for the heat conduction equation

Ivana Šebestová (2014)

Applications of Mathematics

We deal with the numerical solution of the nonstationary heat conduction equation with mixed Dirichlet/Neumann boundary conditions. The backward Euler method is employed for the time discretization and the interior penalty discontinuous Galerkin method for the space discretization. Assuming shape regularity, local quasi-uniformity, and transition conditions, we derive both a posteriori upper and lower error bounds. The analysis is based on the Helmholtz decomposition, the averaging interpolation...

Currently displaying 801 – 820 of 9149