The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 1201 –
1220 of
2633
The main goal of the paper is to give a variational formulation of the behaviour of bolt systems in rock mass. The problem arises in geomechanics where bolt systems are applied to reinforce underground openings by inserting steel bars or cables. After giving a variational formulation, we prove the existence and uniqueness and some other properties.
The main goal of the paper is to describe a reinforcement consisting of fully grouted bolts, which is applied to stabilizing underground openings and tunnels. After a variational formulation is given, the existence and uniqueness is proved. Some asymptotic results that make it possible to replace the real system with a continuous one more suitable for discretization are presented. Some other types of reinforcements and properties are studied.
In this work we try to explain various mathematical models describing the dynamical behaviour of suspension bridges such as the Tacoma Narrows bridge. Our attention is concentrated on the derivation of these models, an interpretation of particular parameters and on a discussion of their advantages and disadvantages. Our work should be a starting point for a qualitative study of dynamical structures of this type and that is why we have a closer look at the models, which have not been studied in literature...
In this paper we prove existence, uniqueness, and continuous dependence for a one-dimensional time-dependent problem related to a thermo-mechanical model of structural phase transitions in solids. This model assumes the free energy depending on temperature, macroscopic deformation and also on the proportions of the phases. Here we neglect regularizing terms in the momentum balance equation and in the constitutive laws for the phase proportions.
The Cauchy integral method has been applied to derive exact and closed expressions for Goursat's functions for the first and second fundamental problems for an infinite thermoelastic plate weakened by a hole having arbitrary shape. The plate considered is conformally mapped to the area of the right half-plane. Many previous discussions of various authors can be considered as special cases of this work. The shape of the hole being an ellipse, a crescent, a triangle, or a cut having the shape of a...
A solid dispersion is a dosage form in which an active ingredient (a drug) is mixed with at least one inert solid component. The purpose of the inert component is usually to improve the bioavailability of the drug. In particular, the inert component is frequently chosen to improve the dissolution rate of a drug that is poorly soluble in water. The construction of reliable mathematical models that accurately describe the dissolution of solid dispersions would clearly assist with their rational design....
In the last years many efforts have been devoted to understand the stressmodulated growth of soft tissues. Recent theoretical achievements suggest that a component of the stress-growth coupling is tissue-independent and reads as an Eshelby-like tensor. In this paper we investigate the mathematical properties and the qualitative behavior predicted by equations that specialize that model under few simple assumptions. Equations strictly deduced from a dissipation principle are compared with heuristic...
We present a mesh adaptation method by node movement for two-dimensional linear elasticity problems with unilateral contact. The adaptation is based on a hierarchical estimator on finite element edges and the node displacement techniques use an analogy of the mesh topology with a spring network. We show, through numerical examples, the efficiency of the present adaptation method.
We review some of the most important phenomena due to the phonon-wall collisions in nonlocal heat transport in nanosystems, and show how they may be described through certain slip boundary conditions in phonon hydrodynamics. Heat conduction in nanowires of different cross sections and in thin layers is analyzed, and the dependence of the thermal conductivity on the geometry, as well as on the roughness is pointed out. We also analyze the effects of the roughness of the surface of the pores on the...
Currently displaying 1201 –
1220 of
2633