Displaying 281 – 300 of 441

Showing per page

On the L 2 -instability and L 2 -controllability of steady flows of an ideal incompressible fluid

Alexander Shnirelman (1999)

Journées équations aux dérivées partielles

In the existing stability theory of steady flows of an ideal incompressible fluid, formulated by V. Arnold, the stability is understood as a stability with respect to perturbations with small in L 2 vorticity. Nothing has been known about the stability under perturbation with small energy, without any restrictions on vorticity; it was clear that existing methods do not work for this (the most physically reasonable) class of perturbations. We prove that in fact, every nontrivial steady flow is unstable...

On the Ladyzhenskaya-Smagorinsky turbulence model of the Navier-Stokes equations in smooth domains. The regularity problem

Hugo Beirão da Veiga (2009)

Journal of the European Mathematical Society

We establish regularity results up to the boundary for solutions to generalized Stokes and Navier–Stokes systems of equations in the stationary and evolutive cases. Generalized here means the presence of a shear dependent viscosity. We treat the case p 2 . Actually, we are interested in proving regularity results in L q ( Ω ) spaces for all the second order derivatives of the velocity and all the first order derivatives of the pressure. The main aim of the present paper is to extend our previous scheme, introduced...

On the linear problem arising from motion of a fluid around a moving rigid body

Šárka Matušů-Nečasová, Jörg Wolf (2015)

Mathematica Bohemica

We study a linear system of equations arising from fluid motion around a moving rigid body, where rotation is included. Originally, the coordinate system is attached to the fluid, which means that the domain is changing with respect to time. To get a problem in the fixed domain, the problem is rewritten in the coordinate system attached to the body. The aim of the present paper is the proof of the existence of a strong solution in a weighted Lebesgue space. In particular, we prove the existence...

On the local strong solutions for a system describing the flow of a viscoelastic fluid

Ondřej Kreml, Milan Pokorný (2009)

Banach Center Publications

We consider a model for the viscoelastic fluid which has recently been studied in [4] and [1]. We show the local-in-time existence of a strong solution to the corresponding system of partial differential equations under less regularity assumptions on the initial data than in the above mentioned papers. The main difference in our approach is the use of the L p theory for the Stokes system.

On the localization of the vortices

Carlo Marchioro (1998)

Bollettino dell'Unione Matematica Italiana

Studiamo l'evoluzione temporale di un fluido bidimensionale incomprimibile non viscoso quando la vorticità iniziale è concentrata in N regioni di diametro ϵ e mostriamo che la vorticità evoluta temporalmente è anche lei concentrata in N piccole regioni di diametro d , d const ϵ α per qualunque α < 1 / 3 . Noi chiamiamo questa proprietà "localizzazione". Come conseguenza abbiamo una connessione rigorosa tra il modello dei vortici puntiformi e l'Equazione di Eulero.

On the long-time behaviour of compressible fluid flows subjected to highly oscillating external forces

Sergiu Aizicovici, Eduard Feireisl (2003)

Czechoslovak Mathematical Journal

We show that the global-in-time solutions to the compressible Navier-Stokes equations driven by highly oscillating external forces stabilize to globally defined (on the whole real line) solutions of the same system with the driving force given by the integral mean of oscillations. Several stability results will be obtained.

On the magnetohydrodynamic type equations in a new class of non-cylindrical domains

Luigi C. Berselli, Jorge Ferreira (1999)

Bollettino dell'Unione Matematica Italiana

Viene provata l'esistenza e l'unicità delle soluzioni deboli per un sistema di equazioni della magnetoidrodinamica in un dominio variabile. Per la dimostrazione si usano il metodo di Galerkin spettrale e la tecnica introdotta da Dal Passo e Ughi per trattare i problemi con dominio dipendente dal tempo.

On the Mathematical Analysis and Optimization of Chemical Vapor Infiltration in Materials Science

Adi Ditkowski, David Gottlieb, Brian W. Sheldon (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper we present an analysis of the partial differential equations that describe the Chemical Vapor Infiltration (CVI) processes. The mathematical model requires at least two partial differential equations, one describing the gas phase and one corresponding to the solid phase. A key difficulty in the process is the long processing times that are typically required. We address here the issue of optimization and show that we can choose appropriate pressure and temperature to minimize these...

On the modeling of the transport of particles in turbulent flows

Thierry Goudon, Frédéric Poupaud (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We investigate different asymptotic regimes for Vlasov equations modeling the evolution of a cloud of particles in a turbulent flow. In one case we obtain a convection or a convection-diffusion effective equation on the concentration of particles. In the second case, the effective model relies on a Vlasov-Fokker-Planck equation.

On the modeling of the transport of particles in turbulent flows

Thierry Goudon, Frédéric Poupaud (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We investigate different asymptotic regimes for Vlasov equations modeling the evolution of a cloud of particles in a turbulent flow. In one case we obtain a convection or a convection-diffusion effective equation on the concentration of particles. In the second case, the effective model relies on a Vlasov-Fokker-Planck equation.

Currently displaying 281 – 300 of 441