Displaying 901 – 920 of 3487

Showing per page

Exact controllability in fluid–solid structure : the Helmholtz model

Jean-Pierre Raymond, Muthusamy Vanninathan (2005)

ESAIM: Control, Optimisation and Calculus of Variations

A model representing the vibrations of a fluid-solid coupled structure is considered. Following Hilbert Uniqueness Method (HUM) introduced by Lions, we establish exact controllability results for this model with an internal control in the fluid part and there is no control in the solid part. Novel features which arise because of the coupling are pointed out. It is a source of difficulty in the proof of observability inequalities, definition of weak solutions and the proof of controllability results....

Exact solution of the time fractional variant Boussinesq-Burgers equations

Bibekananda Bira, Hemanta Mandal, Dia Zeidan (2021)

Applications of Mathematics

In the present article, we consider a nonlinear time fractional system of variant Boussinesq-Burgers equations. Using Lie group analysis, we derive the infinitesimal groups of transformations containing some arbitrary constants. Next, we obtain the system of optimal algebras for the symmetry group of transformations. Afterward, we consider one of the optimal algebras and construct similarity variables, which reduces the given system of fractional partial differential equations (FPDEs) to fractional...

Existence, a priori and a posteriori error estimates for a nonlinear three-field problem arising from Oldroyd-B viscoelastic flows

Marco Picasso, Jacques Rappaz (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper, a nonlinear problem corresponding to a simplified Oldroyd-B model without convective terms is considered. Assuming the domain to be a convex polygon, existence of a solution is proved for small relaxation times. Continuous piecewise linear finite elements together with a Galerkin Least Square (GLS) method are studied for solving this problem. Existence and a priori error estimates are established using a Newton-chord fixed point theorem, a posteriori error estimates are also derived....

Existence, a priori and a posteriori error estimates for a nonlinear three-field problem arising from Oldroyd-B viscoelastic flows

Marco Picasso, Jacques Rappaz (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper, a nonlinear problem corresponding to a simplified Oldroyd-B model without convective terms is considered. Assuming the domain to be a convex polygon, existence of a solution is proved for small relaxation times. Continuous piecewise linear finite elements together with a Galerkin Least Square (GLS) method are studied for solving this problem. Existence and a priori error estimates are established using a Newton-chord fixed point theorem, a posteriori error estimates are also derived. An...

Existence and uniqueness for non-linear singular integral equations used in fluid mechanics

E. G. Ladopoulos, V. A. Zisis (1997)

Applications of Mathematics

Non-linear singular integral equations are investigated in connection with some basic applications in two-dimensional fluid mechanics. A general existence and uniqueness analysis is proposed for non-linear singular integral equations defined on a Banach space. Therefore, the non-linear equations are defined over a finite set of contours and the existence of solutions is investigated for two different kinds of equations, the first and the second kind. Moreover, the existence of solutions is further...

Existence and uniqueness of solutions for a degenerate quasilinear parabolic problem.

Maurizio Badii (1994)

Publicacions Matemàtiques

We consider the following quasilinear parabolic equation of degenerate type with convection term ut = φ (u)xx + b(u)x in (-L,0) x (0,T). We solve the associate initial-boundary data problem, with nonlinear flux conditions. This problem describes the evaporation of an incompressible fluid from a homogeneous porous media. The nonlinear condition in x = 0 means that the flow of fluid leaving the porous media depends on variable meteorological conditions and in a nonlinear manner on u. In x = -L we...

Existence and uniqueness results for non-Newtonian fluids of the Oldroyd type in unbounded domains

Rodolfo Salvi (2005)

Banach Center Publications

In the paper [13], we give the full system of equations modelling the motion of a fluid/viscoelastic solid system, and obtain a differential model similar to the so-called Oldroyd model for a viscoelastic fluid. Moreover, existence results in bounded domains are obtained. In this paper we extend the results in [13] to unbounded domains. The unique solvability of the system of equations is established locally in time and globally in time with so-called smallness restrictions. Moreover, existence...

Currently displaying 901 – 920 of 3487