Displaying 1041 – 1060 of 3470

Showing per page

Fluid flow modeling in complex areas*, **

Jean–Marc Mounsamy, Jacques Laminie, Pascal Poullet (2012)

ESAIM: Proceedings

We show first results of 3D simulation of sea currents in a realistic context. We use the full Navier–Stokes equations for incompressible viscous fluid. The problem is solved using a second order incremental projection method associated with the finite volume of the staggered (MAC) scheme for the spatial discretization. After validation on classical cases, it is used in a numerical simulation of the Pointe à Pitre harbour area. The use of the fictious domain method permits us to take into account...

Fluid-dynamic equations for reacting gas mixtures

Marzia Bisi, Maria Groppi, Giampiero Spiga (2005)

Applications of Mathematics

Starting from the Grad 13-moment equations for a bimolecular chemical reaction, Navier-Stokes-type equations are derived by asymptotic procedure in the limit of small mean paths. Two physical situations of slow and fast reactions, with their different hydrodynamic variables and conservation equations, are considered separately, yielding different limiting results.

Fluide idéal incompressible en dimension deux autour d’un obstacle fin

Christophe Lacave (2008/2009)

Séminaire Équations aux dérivées partielles

Nous étudions le comportement asymptotique des fluides incompressibles dans les domaines extérieurs, quand l’obstacle devient de plus en plus fin, tendant vers une courbe. Nous étendons les travaux d’Iftimie, Lopes Filho, Nussenzveig Lopes et Kelliher dans lesquels les auteurs considèrent des obstacles se contractant vers un point. En utilisant des outils de l’analyse complexe, nous détaillerons le cas des fluides idéaux en dimension deux autour d’une courbe. Nous donnerons ensuite, à titre indicatif,...

Fluides incompressibles à densité variable

Raphaël Danchin (2002/2003)

Séminaire Équations aux dérivées partielles

 On généralise aux fluides incompressibles à densité variable un certain nombre de résultats bien connus pour les équations de Navier-Stokes et d’Euler incompressibles.

Fluides incompressibles horizontalement visqueux

Marius Paicu (2003)

Journées équations aux dérivées partielles

Motivé par l'étude des fluides tournants entre deux plaques, nous considérons l'équation tridimensionnelle de Navier-Stokes incompressible avec viscosité verticale nulle. Nous démontrons l'existence locale et l'unicité de la solution dans un espace critique (invariant par le changement d'échelle de l'équation). La solution est globale en temps si la donnée initiale est petite par rapport à la viscosité horizontale. Nous obtenons l'unicité de la solution dans un espace plus grand que l'espace des...

Fluid–particle shear flows

Bertrand Maury (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Our purpose is to estimate numerically the influence of particles on the global viscosity of fluid–particle mixtures. Particles are supposed to rigid, and the surrounding fluid is newtonian. The motion of the mixture is computed directly, i.e. all the particle motions are computed explicitly. Apparent viscosity, based on the force exerted by the fluid on the sliding walls, is computed at each time step of the simulation. In order to perform long–time simulations and still control the solid fraction,...

Fluid–particle shear flows

Bertrand Maury (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Our purpose is to estimate numerically the influence of particles on the global viscosity of fluid–particle mixtures. Particles are supposed to rigid, and the surrounding fluid is newtonian. The motion of the mixture is computed directly, i.e. all the particle motions are computed explicitly. Apparent viscosity, based on the force exerted by the fluid on the sliding walls, is computed at each time step of the simulation. In order to perform long–time simulations and still control the solid fraction,...

Fluids with anisotropic viscosity

Jean-Yves Chemin, Benoît Desjardins, Isabelle Gallagher, Emmanuel Grenier (2000)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Fluids with anisotropic viscosity

Jean-Yves Chemin, Benoît Desjardins, Isabelle Gallagher, Emmanuel Grenier (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Motivated by rotating fluids, we study incompressible fluids with anisotropic viscosity. We use anisotropic spaces that enable us to prove existence theorems for less regular initial data than usual. In the case of rotating fluids, in the whole space, we prove Strichartz-type anisotropic, dispersive estimates which allow us to prove global wellposedness for fast enough rotation.

Fokker-Planck equation in bounded domain

Laurent Chupin (2010)

Annales de l’institut Fourier

We study the existence and the uniqueness of a solution  ϕ to the linear Fokker-Planck equation - Δ ϕ + div ( ϕ F ) = f in a bounded domain of  d when F is a “confinement” vector field. This field acting for instance like the inverse of the distance to the boundary. An illustration of the obtained results is given within the framework of fluid mechanics and polymer flows.

Currently displaying 1041 – 1060 of 3470