Displaying 221 – 240 of 427

Showing per page

Model following control system with time delays

Dazhong Wang, Shujing Wu, Wei Zhang, Guoqiang Wang, Fei Wu, Shigenori Okubo (2016)

Kybernetika

Design of model following control system (MFCS) for nonlinear system with time delays and disturbances is discussed. In this paper, the method of MFCS will be extended to nonlinear system with time delays. We set the nonlinear part f ( v ( t ) ) of the controlled object as | | f ( v ( t ) ) | | α + β | | v ( t ) | | γ , and show the bounded of internal states by separating the nonlinear part into γ 0 . Some preliminary numerical simulations are provided to demonstrate the effectiveness of the proposed method.

Modeling nonlinear road traffic networks for junction control

Tamás Péter (2012)

International Journal of Applied Mathematics and Computer Science

The paper introduces a method of mathematical modeling of high scale road traffic networks, where a new special hypermatrix structure is intended to be used. The structure describes the inner-inner, inner-outer and outer-outer relations, and laws of a network area. The research examines the nonlinear equation system. The analysed model can be applied to the testing and planning of large-scale road traffic networks and the regulation of traffic systems. The elaborated model is in state space form,...

Modelling and control of an omnidirectional mobile manipulator

Salima Djebrani, Abderraouf Benali, Foudil Abdessemed (2012)

International Journal of Applied Mathematics and Computer Science

A new approach to control an omnidirectional mobile manipulator is developed. The robot is considered to be an individual agent aimed at performing robotic tasks described in terms of a displacement and a force interaction with the environment. A reactive architecture and impedance control are used to ensure reliable task execution in response to environment stimuli. The mechanical structure of our holonomic mobile manipulator is built of two joint manipulators mounted on a holonomic vehicle. The...

Necessary and sufficient Lyapunov-like conditions for robust nonlinear stabilization

Iasson Karafyllis, Zhong-Ping Jiang (2010)

ESAIM: Control, Optimisation and Calculus of Variations

In this work, we propose a methodology for the expression of necessary and sufficient Lyapunov-like conditions for the existence of stabilizing feedback laws. The methodology is an extension of the well-known Control Lyapunov Function (CLF) method and can be applied to very general nonlinear time-varying systems with disturbance and control inputs, including both finite and infinite-dimensional systems. The generality of the proposed methodology is also reflected upon by the fact that partial...

Neural network optimal control for nonlinear system based on zero-sum differential game

Fu Xingjian, Li Zizheng (2021)

Kybernetika

In this paper, for a class of the complex nonlinear system control problems, based on the two-person zero-sum game theory, combined with the idea of approximate dynamic programming(ADP), the constrained optimization control problem is solved for the nonlinear systems with unknown system functions and unknown time-varying disturbances. In order to obtain the approximate optimal solution of the zero-sum game, the multilayer neural network is used to fit the evaluation network, the execution network...

Neural network-based MRAC control of dynamic nonlinear systems

Ghania Debbache, Abdelhak Bennia, Noureddine Golea (2006)

International Journal of Applied Mathematics and Computer Science

This paper presents direct model reference adaptive control for a class of nonlinear systems with unknown nonlinearities. The model following conditions are assured by using adaptive neural networks as the nonlinear state feedback controller. Both full state information and observer-based schemes are investigated. All the signals in the closed loop are guaranteed to be bounded and the system state is proven to converge to a small neighborhood of the reference model state. It is also shown that stability...

Non-fragile controllers for a class of time-delay nonlinear systems

Lubomír Bakule, Manuel de la Sen (2009)

Kybernetika

The paper deals with the synthesis of a non-fragile state controller with reduced design complexity for a class of continuous-time nonlinear delayed symmetric composite systems. Additive controller gain perturbations are considered. Both subsystems and interconnections include time-delays. A low-order control design system is first constructed. Then, stabilizing controllers with norm bounded gain uncertainties are designed for the control design system using linear matrix inequalities (LMIs) for...

Nonlinear analysis of vehicle control actuations based on controlled invariant sets

Balázs Németh, Péter Gáspár, Tamás Péni (2016)

International Journal of Applied Mathematics and Computer Science

In the paper, an analysis method is applied to the lateral stabilization problem of vehicle systems. The aim is to find the largest state-space region in which the lateral stability of the vehicle can be guaranteed by the peak-bounded control input. In the analysis, the nonlinear polynomial sum-of-squares programming method is applied. A practical computation technique is developed to calculate the maximum controlled invariant set of the system. The method calculates the maximum controlled invariant...

Nonlinear bounded control for time-delay systems

Germain Garcia, Sophie Tarbouriech (2001)

Kybernetika

A method to derive a nonlinear bounded state feedback controller for a linear continuous-time system with time-delay in the state is proposed. The controllers are based on an e -parameterized family of algebraic Riccati equations or on an e -parameterized family of LMI optimization problems. Hence, nested ellipsoidal neighborhoods of the origin are determined. Thus, from the Lyapunov–Krasovskii theorem, the uniform asymptotic stability of the closed-loop system is guaranteed and a certain performance...

Nonlinear controller design of a ship autopilot

Mirosław Tomera (2010)

International Journal of Applied Mathematics and Computer Science

The main goal here is to design a proper and efficient controller for a ship autopilot based on the sliding mode control method. A hydrodynamic numerical model of CyberShip II including wave effects is applied to simulate the ship autopilot system by using time domain analysis. To compare the results similar research was conducted with the PD controller, which was adapted to the autopilot system. The differences in simulation results between two controllers are analyzed by a cost function composed...

Nonlinear diagnostic filter design: algebraic and geometric points of view

Alexey Shumsky, Alexey Zhirabok (2006)

International Journal of Applied Mathematics and Computer Science

The problem of diagnostic filter design is studied. Algebraic and geometric approaches to solving this problem are investigated. Some relations between these approaches are established. New definitions of fault detectability and isolability are formulated. On the basis of these definitions, a procedure for diagnostic filter design is given in both algebraic and geometric terms.

Nonlinear model predictive control of a boiler unit: A fault tolerant control study

Krzysztof Patan, Józef Korbicz (2012)

International Journal of Applied Mathematics and Computer Science

This paper deals with a nonlinear model predictive control designed for a boiler unit. The predictive controller is realized by means of a recurrent neural network which acts as a one-step ahead predictor. Then, based on the neural predictor, the control law is derived solving an optimization problem. Fault tolerant properties of the proposed control system are also investigated. A set of eight faulty scenarios is prepared to verify the quality of the fault tolerant control. Based of different faulty...

Currently displaying 221 – 240 of 427