The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 161 –
180 of
438
This paper presents a computational procedure for the design of an observer of a nonlinear system. Outputs can be delayed, however, this delay must be known and constant. The characteristic feature of the design procedure is computation of a solution of a partial differential equation. This equation is solved using the finite element method. Conditions under which existence of a solution is guaranteed are derived. These are formulated by means of theory of partial differential equations in -space....
In this paper, finite-time boundedness and stabilization problems for a class of switched linear systems with time-varying exogenous disturbances are studied. Firstly, the concepts of finite-time stability and finite-time boundedness are extended to switched linear systems. Then, based on matrix inequalities, some sufficient conditions under which the switched linear systems are finite-time bounded and uniformly finite-time bounded are given. Moreover, to solve the finite-time stabilization problem,...
The problem of finite-time cooperative tracking control for a class of second-order nonlinear multi-agent systems is studied in this paper. The agent dynamic is described by a second-order nonlinear system with uncertain time-varying control coefficients and unknown nonlinear perturbations. Based on the finite-time control technique and graph theory, a class of distributed finite-time control laws are proposed which are only based on the neighbors' information. Under the proposed controller, it...
This paper investigates the finite-time observability of probabilistic Boolean multiplex control networks (PBMCNs). Firstly, the finite-time observability of the PBMCNs is converted into the set reachability issue according to the parallel interconnection technique (a minor modification of the weighted pair graph method in the literature). Secondly, the necessary and sufficient condition for the finite-time observability of PBMCNs is presented based on the set reachability. Finally, the main conclusions...
We study the problem of flatness of two-input driftless control systems. Although a characterization of flat systems of that class is known, the problems of describing all flat outputs and of calculating them is open and we solve it in the paper. We show that all x-flat outputs are parameterized by an arbitrary function of three canonically defined variables. We also construct a system of 1st order PDE’s whose solutions give all x-flat outputs of two-input driftless systems. We illustrate our results...
We study the problem of flatness of two-input driftless control systems. Although a
characterization of flat systems of that class is known, the problems of describing all
flat outputs and of calculating them is open and we solve it in the paper. We show that
all x-flat outputs are parameterized by an arbitrary function of three
canonically defined variables. We also construct a system of 1st order PDE’s whose
solutions give all x-flat outputs of...
We study the problem of flatness of two-input driftless control systems. Although a
characterization of flat systems of that class is known, the problems of describing all
flat outputs and of calculating them is open and we solve it in the paper. We show that
all x-flat outputs are parameterized by an arbitrary function of three
canonically defined variables. We also construct a system of 1st order PDE’s whose
solutions give all x-flat outputs of...
This paper studies the distributed consensus problem of high-order strict-feedback nonlinear multiagent systems. By employing the adaptive backstepping technique and switched system theory, a novel protocol is proposed for MASs with switched topologies. Global information such as the number of agents and communication topology is not used. In addition, the communication topology between agents can be switched between possible topologies at any time. Based on the Lyapunov function method, the proposed...
This paper is concerned with the functional observer design for a class of Multi-Input Multi-Output discrete-time systems with mixed time-varying delays. Firstly, using the Lyapunov-Krasovskii functional approach, we design the parameters of the delay-dependent observer. We establish the sufficient conditions to guarantee the exponential stability of functional observer error system. In addition, for design purposes, delay-dependent sufficient conditions are proposed in terms of matrix inequalities...
This paper examines the problem of designing a robust fuzzy controller with -stability constraints for a class of nonlinear dynamic systems which is described by a Takagi-Sugeno (TS) fuzzy model. Fuzzy modelling is a multi-model approach in which simple sub-models are combined to determine the global behavior of the system. Based on a linear matrix inequality (LMI) approach, we develop a robust fuzzy controller that guarantees (i) the ₂-gain of the mapping from the exogenous input noise to the...
This paper examines the inverse control problem of nonlinear systems with stable dynamics using a fuzzy modeling approach. Indeed, based on the ability of fuzzy systems to approximate any nonlinear mapping, the nonlinear system is represented by a Takagi-Sugeno (TS) fuzzy system, which is then inverted for designing a fuzzy controller. As an application of the proposed inverse control methodology, two popular control structures, namely, feedback linearization and Nonlinear Internal Model Control...
This paper proposes the use of gain scheduling as a method of controlling a servo system with hard non-linear elements. The servo controls two elements of a tracker mounted on a ship at sea. There is stiction at the zero velocity point and non-linear friction against the motion of each tracker axis. A dual feedback loop control structure is employed. Fuzzy logic is used to provide smoothly varying non-linear scheduling functions to map the velocity of the servo relevant to the deck of the ship onto...
The problem of output regulation of the system affected by unknown constant parameters is considered here. Under certain assumptions, such a problem is known to be solvable using error feedback via the so-called immersion to an observable linear system with outputs. Nevertheless, for many interesting cases this kind of finite dimensional immersion is difficult or even impossible to find. In order to achieve constructive procedures for wider classes, this paper investigates a more general type of...
A modified version of the classical kernel nonparametric identification algorithm for nonlinearity recovering in a Hammerstein system under the existence of random noise is proposed. The assumptions imposed on the unknown characteristic are weak. The generalized kernel method proposed in the paper provides more accurate results in comparison with the classical kernel nonparametric estimate, regardless of the number of measurements. The convergence in probability of the proposed estimate to the unknown...
Generalized synchronization in the direct acyclic networks, i.e. the networks represented by the directed tree, is presented here. Network nodes consist of copies of the so-called generalized Lorenz system with possibly different parameters yet mutually structurally equivalent. The difference in parameters actually requires the generalized synchronization rather than the identical one. As the class of generalized Lorenz systems includes the well-known particular classes such as (classical) Lorenz...
Currently displaying 161 –
180 of
438