Critical points and nonlinear variational problems
Mémoires de la Société Mathématique de France (1992)
- Volume: 49, page 1-139
- ISSN: 0249-633X
Access Full Article
topHow to cite
topAmbrosetti, Antonio. "Critical points and nonlinear variational problems." Mémoires de la Société Mathématique de France 49 (1992): 1-139. <http://eudml.org/doc/94900>.
@article{Ambrosetti1992,
author = {Ambrosetti, Antonio},
journal = {Mémoires de la Société Mathématique de France},
keywords = {Lusternik-Schnirelman theory; mountain-pass; linking theorems},
language = {eng},
pages = {1-139},
publisher = {Société mathématique de France},
title = {Critical points and nonlinear variational problems},
url = {http://eudml.org/doc/94900},
volume = {49},
year = {1992},
}
TY - JOUR
AU - Ambrosetti, Antonio
TI - Critical points and nonlinear variational problems
JO - Mémoires de la Société Mathématique de France
PY - 1992
PB - Société mathématique de France
VL - 49
SP - 1
EP - 139
LA - eng
KW - Lusternik-Schnirelman theory; mountain-pass; linking theorems
UR - http://eudml.org/doc/94900
ER -
References
top- [1] ALVINO A.-LIONSP.L.-TROMBETTI G., Comparaison des solutions d'équations paraboliques et elliptiques par symétrisation. Une méthode nouvelle, C.R.A.S. 303 (1986), 975-978. Zbl0617.35008
- [2] AMANN H.-HESS P., A multiplicity result for a class of elliptic boundary value problems Proc. Royal. Soc. Ed. 84, A (1979), 145-151. Zbl0416.35029MR80m:35032
- [3] AMANN H.-ZEHNDER E., Nontrivial solutions for a class of non-resonance problems and applications to nonlinear differential equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci., (4) 7 (1980), 539-603. Zbl0452.47077MR82b:47077
- [4] AMBROSETTI A., Esistenza di infinite soluzioni per problemi non lineari in assenza di parametro, Atti Acc. Naz. Lincei, 52 (1972), 660-667. Zbl0249.35030MR48 #9103
- [5] AMBROSETTI A., A perturbation theorem for superlinear boundary value problems, M.R.C. Tech. Summ. Rep. (1974).
- [6] AMBROSETTI A., Elliptic equations with jumping nonlinearities, J. Math. Phys. Sci. 18-1 (1984), 1-12. Zbl0589.35043MR86d:35049
- [7] AMBROSETTI A., Remarks on dynamical systems with singular potentials, in Nonlinear Analysis, a trubute in honour of Giovanni Prodi, Quaderni Scuola Norm. Sup. Pisa, (1991), 51-60. MR93m:58018
- [8] AMBROSETTI A.-BADIALE M., The dual variational principle and elliptic problems with discontinuous nonlinearities, Journ. Math. Anal. Appl. 140, 2 (1989), 363-373. Zbl0687.35033MR90k:35097
- [9] AMBROSETTI A.-BESSI U., Multiple periodic trajectories in a relativistic gravitational field, in Variational Methods (Ed.H. Berestycki et al.), Birkäuser, (1990), 373-381. Zbl0725.34038MR93k:58187
- [10] AMBROSETTI A.-BESSI U., Multiple closed orbits for perturbed Keplerian problems, J. Diff. Equat. to appear. Preliminary note in Rend. Mat. Acc. Lincei, s. 9, v. 2 (1991), 11-15. Zbl0759.34033MR92f:70011
- [11] AMBROSETTI A.-BERTOTTI M.L., Homoclinics for a second order conservative systems, Proc. Conf. in honour of L. Nirenberg, Trento 1990, to appear. Zbl0804.34046
- [12] AMBROSETTI A.-CALAHORRANO M. - DOBARRO F., Remarks on the Grad-Shafranov equation, Appl. Math. Lett. 3-3 (1990), 9-11. Zbl0772.35085MR91k:35085
- [13] AMBROSETTI A.-COTI ZELATI V., Critical point with lack of compactness and singular dynamical systems, Ann. Mat. Pura Appl. 149 (1987), 237-259. Zbl0642.58017MR89e:58023
- [14] AMBROSETTI A.-COTI ZELATI V., Perturbation of Hamiltonian Systems with Keplerian Potentials, Mat. Zeit. 201 (1989), 227-242. Preliminary Note in C. R. Acad. Sci. Paris 307 (1988), 568-571. Zbl0653.34032MR90g:58105
- [15] AMBROSETTI A.-COTI ZELATI V., Closed orbits with fixed energy for singular Hamiltonian Systems, Archive Rat. Mech. Analysis, 112 (1990), 339-362. Zbl0737.70008MR91k:34053
- [16] AMBROSETTI A.-COTI ZELATI V., Closed orbits with fixed energy for a class of N-body problems, Annales Inst H. Poincaré Analyse Nonlin, to appear. Zbl0757.70007
- [17] AMBROSETTI A.-COTI ZELATI V. - EKELAND I., Symmetry breaking in Hamiltonian Systems, J. Diff. Equat. 67 (1987), 165-184. Zbl0606.58043MR88h:58040
- [18] AMBROSETTI A.-EKELAND I., Periodic solution of a class of Hamiltonian Systems with singularities, Proc. Royal Soc. Edinburgh 114 A (1990), 1-13. Zbl0708.34031MR91m:58127
- [19] AMBROSETTI A.-LUPO D., A class of nonlinear Dirichlet with multiple solutions, J. Nonlinear Anal. T.M.A..8-10 (1984), 1145-1150. Zbl0554.35046MR86d:35050
- [20] AMBROSETTI A.-MANCINI G., Sharp nonuniqueness results for some nonlinear problems, J. Nonlinear Anal. T.M.A. 3 (1979), 635-645. Zbl0433.35025MR80k:47073
- [21] AMBROSETTI A.-MANCINI G., Remarks on some free boundary problems, Contribution to nonlinear Partial Differential Equations, Pitman (1981), 24-36. Zbl0477.35084MR84b:35120
- [22] AMBROSETTI A.-MANCINI G., Solution of minimal period for a class of convex Hamiltonian systems, Math. Annalen 255 (1981), 405-421. Zbl0466.70022MR82j:58043
- [23] AMBROSETTI A.-MANCINI G., On a theorem by Ekeland and Lasry concerning the number of periodic Hamiltonian trajectories, J. Diff. Equat.43 (1982), 249-256. Zbl0492.70018MR83m:58034
- [24] AMBROSETTI A.-PRODI G., On the inversion of some differentiable mapping with singularities between Banach spaces, Ann. Mat. Pura Appl. 93 (1972), 231-246. Zbl0288.35020MR47 #9377
- [25] AMBROSETTI A.-PRODI G., A primer of Nonlinear Analysis, Cambridge Univ. Press, to appear. Zbl0781.47046
- [26] AMBROSETTI A.-RABINOWITZ P.H., Dual variational methods in critical points theory and applications, J. Funct. Anal. 14 (1973), 349-381. Zbl0273.49063MR51 #6412
- [27] AMBROSETTI A.-SRIKANTH P.N., Superlinear elliptic problems and the dual principle in critical point theory, J. Math. Phys. Sci. 18-4 (1984), 441-451. Zbl0581.35020MR87g:35071
- [28] AMBROSETTI A.-STRUWE M., A note on the problem + Δu ‗ λu , u |u|2⋆-2, u ∊ H10, λ > 0, Manus Math. 54 (1986), 373-379. Zbl0596.35043MR87h:35076
- [29] AMBROSETTI A.-STRUWE M., Existence of steady vortex rings in an ideal fluid, Arch. Rat. Mech. Anal. 108, 2 (1989), 97-109. Zbl0694.76012MR90g:76036
- [30] AMBROSETTI A.-TURNER R.E.L., Some discontinuous variationals problems, Diff. and Integral. Equa. 1 (1988), 341-349. Zbl0728.35037MR89c:35052
- [31] AMBROSETTI A.-YANG JANFU, Asymptotic behaviour in planar vortex theory, Rend. Mat. Acc. Lincei, s.9-1 (1990), 285-291. Zbl0709.76027
- [32] AMICK C.J.-FRAENKEL L.E., The uniqueness of Hill's spherical vortex, Arch. Rat. Mech. Anal. 2 (1986), 91-119. Zbl0609.76018MR87b:35139
- [33] AMICK C.J.-TURNER R.E.L., A global branch of steady vortex rings, J. Reine Angw. Math. 384 (1988), 1-23. Zbl0628.76032MR89c:35134
- [34] BAHRI A., Topological results on a certain class of functionals and applications, J. Funct. Anal. 41 (1981), 397-427. Zbl0499.35050MR84c:58017
- [35] BAHRI A.-BERESTYCKI H., A perturbation method in critical point theory and applications, Trans. Amer. Math. Soc. 267 (1981), 1-32. Zbl0476.35030MR82j:35059
- [36] BAHRI A.-CORON J.M., On a nonlinear elliptic equation involving the critical Sobolev exponent : the effect of the topology of the domain, Comm. Pure Appl. Math. 41 (1988), 253-294. Zbl0649.35033MR89c:35053
- [37] BAHRI A.-LIONS P.L., Morse index of some min-max critical points I. Application to multiplicity results, Comm. Pure Appl. Math. 41 (1988), 1027-1037. Zbl0645.58013MR90b:58035
- [38] BAHRI A.-RABINOWITZ P.H., A minimax method for a class of Hamiltonian systems with singular potentials, J. Funct. Anal. 82 (1989), 412-428. Zbl0681.70018MR90g:58030
- [39] BAHRI A.-RABINOWITZ P.H., Solutions of the three-body problem via critical points of infinity, Preprint. Zbl0704.58041
- [40] BANDLE C., Isoperimetric Inequalities and Applications, Pitman, London (1980). Zbl0436.35063MR81e:35095
- [41] BENCI V., A geometrical index for the group S1 and some applications to the research of periodic solutions of O.D.E.'s, Comm. Pure Appl. Math. 34 (1981), 393-432. Zbl0447.34040MR82k:58040
- [42] BENCI V.-CERAMI G., The effect of the domain topology on the number of positive solutions of nonlinear elliptic problems, Arch. Rat. Mech. Anal. 114 (1991), 79-93. Zbl0727.35055MR91j:35102
- [43] BENCI V.-GIANNONI F., Periodic solutions of prescribed energy for a class of Hamiltonian systems with singular potentials, J. Diff. Eq. 82 (1989), 60-70. Zbl0689.34034MR90k:58176
- [44] BENCI V.-RABINOWITZ P.H., Critical point theorems for indefinite functionals, Invent. Math. 52 (1979), 241-273. Zbl0465.49006MR80i:58019
- [45] BERESTYCKI H.-LASRY J.M.-MANCINI G.-RUF B., Existence of multiple periodic orbits on star-shaped Hamiltonian surfaces, Comm. Pure Appl. Math. (1985), 253-290. Zbl0569.58027MR86j:58039
- [46] BERGER M.S. - FRAENKEL L.E., Nonlinear desingularization in certain free-boundary problems, Comm. Math. Phys. 77 (1980), 149-172. Zbl0454.35087MR81m:35055
- [47] BESSI U., Multiple closed orbits for singular conservative systems via geodesics theory, Rend. Sem. Mat. Univ. Padova, to appear. Zbl0850.70210
- [48] BESSI U., Multiple closed orbits of fixed energy for gravitational potentials, J. Diff. Eq., to appear. Zbl0787.34029
- [49] BESSI U., Multiple homoclinics for autonomous singular potentials, to appear. Zbl0812.58088
- [50] BESSI U. - COTI ZELATI V., Symmetries and noncollision closed orbits for a planar N-body type problems, J. Nonlin. Anal. T.M.A. 16 (1991), 587-598. Zbl0715.70016MR92a:70006
- [51] BREZIS H. - CORON J.M. - NIRENBERG L., Free vibrations for a nonlinear equation and a theorem of P. Rabinowitz, Comm. Pure Appl. Math. 33 (1980), 667-684. Zbl0484.35057MR81k:35013
- [52] BREZIS H. - NIRENBERG L., Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983), 437-477. Zbl0541.35029MR84h:35059
- [53] BROWDER F., Infinite dimensional manifolds and nonlinear eigenvalue problems, Ann. of Math. 82 (1965), 459-477. Zbl0136.12002MR34 #3102
- [54] CANDELA A.M., Remarks on the number of positive solutions for a class of nonlinear elliptic problems, Diff. & Int. Eq. (to appear). Zbl0784.35031
- [55] CAPOZZI A. - FORTUNATO D. - PALMIERI G., An existence result for nonlinear elliptic problems involving critical Sobolev exponent, Ann. Inst. Poincaré, Anal. Nonlin. 2 (1985), 463-470. Zbl0612.35053MR87j:35126
- [56] CAPOZZI A. - GRECO C. - SALVATORE A., Lagrangian systems in presence of singularities, Proc. Am. Math. Soc. 102 (1988), 125-130. Zbl0664.34054MR88m:58167
- [57] CLARKE F.H., Periodic solutions of Hamiltonian inclusions, J. Diff. Equat. 40 (1981), 1-6. Zbl0461.34030MR83a:58035
- [58] CLARKE F.H. - EKELAND I., Hamiltonian trajectories having prescribed minimal period, Comm. Pure Appl. Math. 33 (1980), 103-116. Zbl0403.70016MR81e:70017
- [59] CHANG C.K., Variational methods for nondifferentiable functionals and their applications to partial differential equations, J. Math. Anal. Appl. 80 (1981), 102-129. Zbl0487.49027MR82h:35025
- [60] CHANG C.K., A remark on the perturbation of critical manifolds, Preprint Peking University. Zbl0742.57022
- [61] CERAMI G., Soluzioni positive di problemi con parte nonlienare discontinua e applicazioni a un problema di frontiera libera, Boll. U.M.I. 2 (1983), 321-338. Zbl0515.35025MR85a:35034
- [62] CORON J.M., Topologie et cas limite des injections de Sobolev, C.R. Acad. Sci. Paris 299 (1984), 209-212. Zbl0569.35032MR86b:35059
- [63] COTI ZELATI V., Periodic solutions for a class of planar, singular dynamical systems, J. Math. Pures et Appl. 68 (1989), 109-119. Zbl0633.34034MR90f:34071
- [64] COTI ZELATI V., A class of periodic solutions of the N-body problem, Cel. Mech. and Dyn. Astr. 46 (1989), 177-186. Zbl0684.70006MR91c:58116
- [65] COTI ZELATI V., Periodic solutions for N-body type problems, Annales Inst. H. Poincaré, Analyse Nonlin. 7 (1990), 477-492. Zbl0723.70010MR93a:70009
- [66] COTI ZELATI V. - EKELAND I. - SÉRÉ E., A variational approach to homoclinic orbits in Hamiltonian systems, Math. Ann. Vol.288 (1990), 133-160. Zbl0731.34050MR91g:58065
- [67] COTI ZELATI V. - RABINOWITZ P.H., Homoclinic orbits for a second order Hamiltonian systems possessing superquadratic potentials, Preprint SISSA, Trieste (1980). Zbl0744.34045
- [68] COTI ZELATI V. - SERRA E., Collision and non-collision solutions for a class of Keplerian-like dynamical systems, Preprint SISSA, Trieste (1990). Zbl0832.70009
- [69] DANCER E.N., Counterexamples to some conjectures on the number of solutions of nonlinear equations, Math. Ann. 272 (1985), 421-440. Zbl0556.35001MR86j:35056
- [70] DANCER E.N., The G-invariant implicit function theorem in infinite dimension, Proc. Roy. Soc. Edinburgh, 102-A (1986), 211-220. Zbl0601.58013MR87i:58015
- [71] DEGIOVANNI M.-GIANNONI F., Periodic solutions of dynamical systems with Newtonian type potentials, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 15 (1988), 467-494. Zbl0692.34050MR91b:58201
- [72] EKELAND I., Nonconvex minimization problems, Bull. Am. Math. Soc. 1 (1979), 443-474. Zbl0441.49011MR80h:49007
- [73] EKELAND I., Convexity methods in hamiltonian mechanics, Springer, 1990. Zbl0707.70003MR91f:58027
- [74] EKELAND I.-HOFER H., Periodic solution with prescribed minimal period for convex autonomous hamiltonian systems, Invent. Math. 81 (1985), 155-188. Zbl0594.58035MR87b:58028
- [75] EKELAND I.-LASRY J.M., On the number of closed trajectories for a hamiltonian flow on a convex energy surface, Ann. of Math. 112 (1980), 283-319. Zbl0449.70014MR81m:58032
- [76] FADELL E.-HUSSEINI S., A note on the category of free loop space, Proc. A.M.S. 107 (1989), 527-536. Zbl0676.58019MR90a:55008
- [77] FRAENKEL L.E.-BERGER M.S., A global theory of steady vortex rings in an ideal fluid, Acta Math. 132 (1974), 13-51. Zbl0282.76014MR54 #10901
- [78] FUCIK S., Solvability of nonlinear equations and boundary value problems, D. Reidel Publ. Co., Dordrecht (1980). Zbl0453.47035MR83c:47079
- [79] GALLOUET T.-KAVIAN O., Resonance for jumping nonlinearities, Comm. P.D.E. 7-3 (1982), 325-342. Zbl0497.35080MR84f:35054
- [80] GIDAS B.-NI W.M.-NIRENBERG L., Symmetry and relates properties via the maximum principle, Comm. Math. Phys. 68 (1979), 209-243. Zbl0425.35020MR80h:35043
- [81] GIRARDI M.-MATZEU M., Essential critical points of linking type and solutions of minimal period to superquadratic hamiltonian systems, J. Nonlinear Analysis T.M.A., to appear. Zbl0776.58030
- [82] GORDON W.B., Conservative dynamical systems involving strong forces, Trans. Amer. Math. Soc. 204 (1975), 113-135. Zbl0276.58005MR51 #14152
- [83] GHOUSSOUB N.-PREISS D., A general mountain pass principle for locating and classifying critcal points, Annales Inst. H. Poincaré, Analyse Nonlineaire, 6 (1989), 321-330. Zbl0711.58008
- [84] GRECO C., Periodic solutions of a class of singular Hamiltonian systems, J. Nonlinear Analysis T.M.A. 12 (1988), 259-270. Zbl0648.34048MR89d:58040
- [85] HOFER H., A note on the topological degree at a critical point of mountain-pass type, Proc. Am. Math. Soc. 90 (1984), 309-315. Zbl0545.58015MR85a:58015
- [86] HOFER H.-WYSOCKI K., First order elliptic systems and the existence of homoclinic orbits in Hamiltonian systems, Math. Ann. Vol. 288 (1990), 483-503. Zbl0702.34039MR91m:58064
- [87] HOFER H.-ZEHNDER E., Periodic solutions on hypersurfaces and a result by C. Viterbo, Inv. Math. 90 (1987), 1-9. Zbl0631.58022MR89a:58040
- [88] KLINGENBERG W., Lectures on closed geodesics, Springer, 1978. Zbl0397.58018MR57 #17563
- [89] KASDAN J.L.-WARNER F.W., Remarks on some quasilinear elliptic equations, Comm. Pure Appl. Math. 28 (1975), 567-597. Zbl0325.35038MR57 #16972
- [90] KOVALEVSKY J., Introduction to celestial Mechanics, D. Reidel Publ. Co., Dordrecht, 1967. Zbl0189.24502
- [91] KRASNOSELSKII M.A., Topological Methods in the theory of non-linear integral equations, Pergamon, Oxford, 1965.
- [92] LANDESMAN E.M.-LAZER A.C., Nonlinear perturbations of linear elliptic problems at resonance, J. Math. Mech. 19 (1970), 609-623. Zbl0193.39203MR42 #2171
- [93] LAZER A.C.-MCKENNA P.J., On the number of solutions of a nonlinear Dirichlet problem, J. Math. Anal. Appl. 84 (1981), 282-294. Zbl0496.35039MR83e:35050
- [94] LAZZO M., Multiple positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, C.R. Acad. Sci. Paris, to appear. Zbl0761.35021
- [95] LEVI CIVITA T., Introduzione alla meccanica relativistica, Zanichelli, Bologna, 1928. Zbl54.0939.01
- [96] LUSTERNIK L.-SCHNIRELMAN L., Méthode topologique dans les problémes varationelles, Hermann, Paris (1934). Zbl0011.02803JFM60.1228.04
- [97] MAJER P., Ljusternik-Schnirelman theory without Palais-Smale condition and singular dynamical systems, Annales Inst. H. Poincaré, Analyse Nonlin.8 (1991), 459-476. Zbl0749.58046MR93e:58024
- [98] MAWHIN J.-WILLEM M., Critical point theory and hamiltonian systems, Springer, 1989. Zbl0676.58017MR90e:58016
- [99] MOSER J., Periodic orbits near an equilibrium and a theorem by Alan Weinstein, Comm. Pure Appl. Math. 29 (1976), 727-747. Zbl0346.34024MR54 #13998
- [100] MOSER J., Regularization of Kepler's problem and the averaging method on a manifold, Comm. Pure Appl. Math. 23 (1970), 609-636. Zbl0193.53803MR42 #4824
- [101] NI W.M., On the existence of global vortex rings, J. d'Analyse Math. 37 (1980), 208-247. Zbl0457.76020MR81i:76017
- [102] NIRENBERG L., Variational and topological methods in nonlinear problems, Bull. A.M.S. 4-3 (1981), 267-302. Zbl0468.47040MR83e:58015
- [103] NORBURY J., A family of steady vortex rings, J. Fluid Mech. 57 (1973), 417-431. Zbl0254.76018
- [104] PALAIS R., Lusternik-Schnirelman theory on Banach manifolds, Topology 5 (1966), 115-132. Zbl0143.35203MR41 #4584
- [105] PALAIS R.-SMALE S., A generalized Morse theory, Bull. Amer. Math. Soc. 70 (1964), 165-171. Zbl0119.09201MR28 #1634
- [106] POHOZAEV S.I., Eigenfunctions of the equations Δu + λf(u) = 0, Soviet Math. 5 (1965), 1408-1411. Zbl0141.30202
- [107] RABINOWITZ P.H., Periodic solutions of hamiltonian systems, Comm. Pure Appl. Math. 31 (1978), 157-184. Zbl0358.70014MR57 #7674
- [108] RABINOWITZ P.H., A variational method for finding periodic solutions of differential equations, Nonlinear Evolution Equations (M.G. Crandall ed.), Academic Press (1978), 225-251. Zbl0486.35009MR80b:34043
- [109] RABINOWITZ P.H., On a theorem of Hofer and Zehnder, Periodic solutions of hamiltonian systems and related topics (P.H. Rabinowitz et al. ed.), NATO ASI Series C Vol. 209, Reidel Publ. Co., 1986, 245-253. Zbl0635.58014MR89g:58076
- [110] RABINOWITZ P.H., Minimax methods in critical point theory with applications to differential equations, CBMS Reg. Conf. Ser. in Math. 65, A.M.S., Providence, 1986. Zbl0609.58002MR87j:58024
- [111] RABINOWITZ P.H., Homoclinic orbits for a class of Hamiltonian systems, Proceed. Royal Soc. Edinburgh, Vol.114A (1990), 33-38. Zbl0705.34054MR91c:58118
- [112] RABINOWITZ P.H.-TANAKA K., Some results on connecting orbits for a class of Hamiltonian systems, Math. Zeit., to appear. Zbl0707.58022
- [113] SCHWARTZ J.T., Generalizing the Lusternik-Schnirelman theory of critical points, Comm. Pure Appl. Math. 17 (1964), 307-315. Zbl0152.40801MR29 #4069
- [114] SÉRÉ E., Existence of infinitely many homoclinic orbits in Hamiltonian systems, Math. Zeit., to appear. Zbl0725.58017
- [115] SERRA E., Dynamical systems with singular potentials : existence and qualitative properties of periodic motions, Ph.D. Thesis, SISSA, Trieste (1991).
- [116] SERRA E.-TERRACINI S., Noncollision periodic solutions to some three- body like problems, Preprint SISSA, Trieste (1990).
- [117] SRIKANTH P.N., Uniqueness of solutions of nonlinear Dirichlet problems, to appear. Zbl0803.35057
- [118] STAMPACCHIA G., Le probléme de Dirichlet pour les équations elliptiques du second ordre a coefficients discontinuous, Ann. Inst. Fourier, 15 (1965), 189-258. Zbl0151.15401MR33 #404
- [119] STRUWE M., Infinitely many critical points for functionals which are not even and applications to superlinear boundary value problems, Manus. Math. 32 (1980), 335-364. Zbl0456.35031MR82e:58030
- [120] STRUWE M., Variational methods, Springer, 1990. Zbl0746.49010MR92b:49002
- [121] STUART C., Differential equations with discontinuos nonlinearities, Arch. Rat. Mech. Anal. 63 (1976), 59-75. Zbl0393.34010MR58 #1355
- [122] STUART C.-TOLAND J.F., A variational method for boundary value problems with discontinuous non-linearities, J. London Math. Soc. 21 (1980), 319-328. Zbl0434.35042MR81i:35055
- [123] SZULKIN A., Ljusternik-Schnirelmann theory on C1 manifolds, Ann. Inst. H. Poincaré Anal. Non Linéaire 5 (1988), 119-139. Zbl0661.58009MR90a:58027
- [124] TANAKA K., Homoclinic orbits for a singular second order Hamiltonian system, Annales Inst. H. Poincaré, Analyse Non-lineaire, Vol.7 (1990), 427-438. Zbl0712.58026MR93g:58029
- [125] TANAKA K., Non-collision solutions for a second order singular Hamiltonian system with weak forces, Preprint (1991).
- [126] TERRACINI S., Periodic solutions to dynamical systems with Keplerian type potentials, Ph.D. Thesis, SISSA, Trieste (1990).
- [127] VAN GROESEN E.W.C., Analytical mini-max methods for Hamiltonian break orbits of prescribed energy, J. Math. Anal. Appl. 132 (1988), 1-12. Zbl0665.70022
- [128] WANG Z.Q., On a superlinear elliptic equation, Annales Inst H. Poincaré Analyse nonlin. 8 (1991), 43-58. Zbl0733.35043MR92a:35064
- [129] WEINSTEIN A., Normal modes for nonlinear hamiltonian systems, Invent. Math. 20 (1973), 45-57. Zbl0264.70020MR48 #6564
- [130] WEINSTEIN A., Periodic orbits for convex hamiltonian systems, Ann. of Math. 108 (1978), 507-518. Zbl0403.58001MR80g:58034
- [131] YANG JANFU, Existence and asymptotic behaviour in planar vortex theory, to appear.
Citations in EuDML Documents
top- David Arcoya, Lucio Boccardo, A min-max theorem for multiple integrals of the Calculus of Variations and applications
- Carlo Carminati, Some perturbation results for non-linear problems
- Gianni Arioli, Filippo Gazzola, Susanna Terracini, Minimization properties of Hill's orbits and applications to some N-body problems
- Alberto Lovison, Funzioni generatrici a finiti parametri in teoria dei campi
- Salvatore Bonafede, Existence results for a class of semilinear degenerate elliptic equations
- Antonio Ambrosetti, Vittorio Coti Zelati, Multiple homoclinic orbits for a class of conservative systems
- Antonio Ambrosetti, Marino Badiale, Homoclinics : Poincaré-Melnikov type results via a variational approach
- Piero Montecchiari, Multiplicity of homoclinic orbits for a class of asymptotically periodic Hamiltonian systems
- Piero Montecchiari, Multiplicity results for a class of semilinear elliptic equations on
- Massimiliano Berti, Luca Biasco, Enrico Valdinoci, Periodic orbits close to elliptic tori and applications to the three-body problem
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.