The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 20 of 20

Showing per page

Order by Relevance | Title | Year of publication

Condition nécessaire et suffisante pour que certain groupe de Galois soit métacyclique

Abdelmalek AziziMohammed Taous — 2009

Annales mathématiques Blaise Pascal

Soient d est un entier sans facteurs carrés, K = Q ( d , i ) , i = - 1 , K 2 ( 1 ) le 2 -corps de classes de Hilbert de K , K 2 ( 2 ) le 2 -corps de classes de Hilbert de K 2 ( 1 ) et G = Gal ( K 2 ( 2 ) / K ) le groupe de Galois de K 2 ( 2 ) / K . Notre but est de montrer qu’il existe une forme de d tel que le 2 -groupe G est non métacyclique et de donner une condition nécessaire et suffisante pour que le groupe G soit métacyclique dans le cas où d = 2 p avec p un nombre premier tel que p 1 ( mod 4 ) .

Capitulation des 2 -classes d’idéaux de Q ( - p q ( 2 + 2 ) ) p q ± 5 mod 8

Abdelmalek AziziMohammed Talbi — 2009

Annales mathématiques Blaise Pascal

Soient K = Q ( - p q ( 2 + 2 ) ) p et q deux nombres premiers différents tels que p q ± 5 mod 8 , K 2 ( 1 ) le 2 -corps de classes de Hilbert de K , K 2 ( 2 ) le 2 -corps de classes de Hilbert de K 2 ( 1 ) et G le groupe de Galois de K 2 ( 2 ) / K . D’après [], la 2 -partie C 2 , K du groupe de classes de K est de type ( 2 , 2 ) , par suite K 2 ( 1 ) contient trois extensions F i / K  ; i = 1 , 2 , 3 . Dans ce papier, on s’interesse au problème de capitulation des 2 -classes d’idéaux de K dans F i ( i = 1 , 2 , 3 ) et à déterminer la structure de G .

On the Hilbert 2 -class field tower of some abelian 2 -extensions over the field of rational numbers

Abdelmalek AziziAli Mouhib — 2013

Czechoslovak Mathematical Journal

It is well known by results of Golod and Shafarevich that the Hilbert 2 -class field tower of any real quadratic number field, in which the discriminant is not a sum of two squares and divisible by eight primes, is infinite. The aim of this article is to extend this result to any real abelian 2 -extension over the field of rational numbers. So using genus theory, units of biquadratic number fields and norm residue symbol, we prove that for every real abelian 2 -extension over in which eight primes...

Sur l’existence des corps biquadratiques K dont le groupe de Galois du deuxième 2 -corps de classes de Hilbert par rapport à K est semi-diédral

Abdelmalek AziziAli Mouhib — 2005

Archivum Mathematicum

Let K be a biquadratic field, K 2 ( 1 ) be the Hilbert 2 -class field of K and K 2 ( 2 ) be the Hilbert 2 -class field of K 2 ( 1 ) . Our goal is to prove that there exists a biquadratic field K such that Gal ( K 2 ( 1 ) / K ) / 2 × / 2 and the group Gal ( K 2 ( 2 ) / K ) is semi-dihedral. Résumé. Soient K un corps biquadratique, K 2 ( 1 ) le 2 -corps de classes de Hilbert de K et K 2 ( 2 ) le 2 -corps de classes de Hilbert de K 2 ( 1 ) . Notre but est de prouver qu’il existe des corps biquadratiques réels K tels que le groupe Gal ( K 2 ( 1 ) / K ) est de type ( 2 , 2 ) et le groupe Gal ( K 2 ( 2 ) / K ) est semi-diédral.

Capitulation dans certaines extensions non ramifiées de corps quartiques cycliques

Abdelmalek AziziMohammed Talbi — 2008

Archivum Mathematicum

Let K = k ( - p ε l ) with k = ( l ) where l is a prime number such that l = 2 or l 5 m o d 8 , ε the fundamental unit of k , p a prime number such that p 1 m o d 4 and ( p l ) 4 = - 1 , K 2 ( 1 ) the Hilbert 2 -class field of K , K 2 ( 2 ) the Hilbert 2 -class field of K 2 ( 1 ) and G = Gal ( K 2 ( 2 ) / K ) the Galois group of K 2 ( 2 ) / K . According to E. Brown and C. J. Parry [7] and [8], C 2 , K , the Sylow 2 -subgroup of the ideal class group of K , is isomorphic to / 2 × / 2 , consequently K 2 ( 1 ) / K contains three extensions F i / K ( i = 1 , 2 , 3 ) and the tower of the Hilbert 2 -class field of K terminates at either K 2 ( 1 ) or K 2 ( 2 ) . In this work, we are...

On some metabelian 2-groups and applications I

Abdelmalek AziziAbdelkader ZekhniniMohammed Taous — 2016

Colloquium Mathematicae

Let G be some metabelian 2-group satisfying the condition G/G’ ≃ ℤ/2ℤ × ℤ/2ℤ × ℤ/2ℤ. In this paper, we construct all the subgroups of G of index 2 or 4, we give the abelianization types of these subgroups and we compute the kernel of the transfer map. Then we apply these results to study the capitulation problem for the 2-ideal classes of some fields k satisfying the condition G a l ( k ( 2 ) / k ) G , where k ( 2 ) is the second Hilbert 2-class field of k.

Sur un problème de capitulation du corps ( p 1 p 2 , i ) dont le 2 -groupe de classes est élémentaire

Abdelmalek AziziAbdelkader ZekhniniMohammed Taous — 2014

Czechoslovak Mathematical Journal

Soient p 1 p 2 1 ( mod 8 ) des nombres premiers tels que, ( p 1 p 2 ) = - 1 et ( 2 a + b ) = - 1 , où p 1 p 2 = a 2 + b 2 . Soient i = - 1 , d = p 1 p 2 , 𝕜 = ( d , i ) , 𝕜 2 ( 1 ) le 2-corps de classes de Hilbert de 𝕜 et 𝕜 ( * ) = ( p 1 , p 2 , i ) le corps de genres de 𝕜 . La 2-partie C 𝕜 , 2 du groupe de classes de 𝕜 est de type ( 2 , 2 , 2 ) , par suite 𝕜 2 ( 1 ) contient sept extensions quadratiques non ramifiées 𝕂 j / 𝕜 et sept extensions biquadratiques non ramifiées 𝕃 j / 𝕜 . Dans ce papier on s’intéresse à déterminer ces quatorze extensions, le groupe C 𝕜 , 2 et à étudier la capitulation des 2-classes d’idéaux de 𝕜 dans ces extensions.

On the strongly ambiguous classes of some biquadratic number fields

Abdelmalek AziziAbdelkader ZekhniniMohammed Taous — 2016

Mathematica Bohemica

We study the capitulation of 2 -ideal classes of an infinite family of imaginary bicyclic biquadratic number fields consisting of fields 𝕜 = ( 2 p q , i ) , where i = - 1 and p - q 1 ( mod 4 ) are different primes. For each of the three quadratic extensions 𝕂 / 𝕜 inside the absolute genus field 𝕜 ( * ) of 𝕜 , we determine a fundamental system of units and then compute the capitulation kernel of 𝕂 / 𝕜 . The generators of the groups Am s ( 𝕜 / F ) and Am ( 𝕜 / F ) are also determined from which we deduce that 𝕜 ( * ) is smaller than the relative genus field ( 𝕜 / ( i ) ) * . Then we prove that each...

Sur les unités des extensions cubiques cycliques non ramifiées sur certains sous-corps de Q ( d , - 3 )

Abdelmalek AziziMohamed AyadiMoulay Chrif IsmailiMohamed Talbi — 2009

Annales mathématiques Blaise Pascal

Soient k le corps quadratique réel Q ( d ) (respectivement le corps biquadratique Q ( d , - 3 ) ), d un entier positif sans facteur carré, K une extension cubique cyclique non ramifiée de k , diédrale sur Q totalement réelle, (respectivement diédrale sur Q ( - 3 ) .) On constate qu’on a deux structures possibles pour le groupe des unités U K de K , notées a l p h a et d e l t a .

On the Hilbert 2 -class field tower of some imaginary biquadratic number fields

Mohamed Mahmoud Chems-EddinAbdelmalek AziziAbdelkader ZekhniniIdriss Jerrari — 2021

Czechoslovak Mathematical Journal

Let 𝕜 = 2 , d be an imaginary bicyclic biquadratic number field, where d is an odd negative square-free integer and 𝕜 2 ( 2 ) its second Hilbert 2 -class field. Denote by G = Gal ( 𝕜 2 ( 2 ) / 𝕜 ) the Galois group of 𝕜 2 ( 2 ) / 𝕜 . The purpose of this note is to investigate the Hilbert 2 -class field tower of 𝕜 and then deduce the structure of G .

Note on the Hilbert 2-class field tower

Let k be a number field with a 2-class group isomorphic to the Klein four-group. The aim of this paper is to give a characterization of capitulation types using group properties. Furthermore, as applications, we determine the structure of the second 2-class groups of some special Dirichlet fields 𝕜 = ( d , - 1 ) , which leads to a correction of some parts in the main results of A. Azizi and A. Zekhini (2020).

On the 2 -class group of some number fields with large degree

Let d be an odd square-free integer, m 3 any integer and L m , d : = ( ζ 2 m , d ) . In this paper, we shall determine all the fields L m , d having an odd class number. Furthermore, using the cyclotomic 2 -extensions of some number fields, we compute the rank of the 2 -class group of L m , d whenever the prime divisors of d are congruent to 3 or 5 ( mod 8 ) .

Page 1 Next

Download Results (CSV)