Sur la capitulation des 2-classes d'idéaux de 𝕜 = ℚ (√(2pq),i) où p ≡ -q ≡ 1 mod 4
In this paper we characterize weak multiplication modules.
Soient est un entier sans facteurs carrés, , , le -corps de classes de Hilbert de , le -corps de classes de Hilbert de et le groupe de Galois de . Notre but est de montrer qu’il existe une forme de tel que le -groupe est non métacyclique et de donner une condition nécessaire et suffisante pour que le groupe soit métacyclique dans le cas où avec un nombre premier tel que .
Soient où et deux nombres premiers différents tels que , le -corps de classes de Hilbert de , le -corps de classes de Hilbert de et le groupe de Galois de . D’après [], la -partie du groupe de classes de est de type , par suite contient trois extensions ; . Dans ce papier, on s’interesse au problème de capitulation des -classes d’idéaux de dans et à déterminer la structure de .
It is well known by results of Golod and Shafarevich that the Hilbert -class field tower of any real quadratic number field, in which the discriminant is not a sum of two squares and divisible by eight primes, is infinite. The aim of this article is to extend this result to any real abelian -extension over the field of rational numbers. So using genus theory, units of biquadratic number fields and norm residue symbol, we prove that for every real abelian -extension over in which eight primes...
Let be a biquadratic field, be the Hilbert -class field of and be the Hilbert -class field of . Our goal is to prove that there exists a biquadratic field such that and the group is semi-dihedral. Résumé. Soient un corps biquadratique, le -corps de classes de Hilbert de et le -corps de classes de Hilbert de . Notre but est de prouver qu’il existe des corps biquadratiques réels tels que le groupe est de type et le groupe est semi-diédral.
Let with where is a prime number such that or , the fundamental unit of , a prime number such that and , the Hilbert -class field of , the Hilbert -class field of and the Galois group of . According to E. Brown and C. J. Parry [7] and [8], , the Sylow -subgroup of the ideal class group of , is isomorphic to , consequently contains three extensions and the tower of the Hilbert -class field of terminates at either or . In this work, we are...
Let be an imaginary cyclic quartic number field whose 2-class group is of type , i.e., isomorphic to . The aim of this paper is to determine the structure of the Iwasawa module of the genus field of .
Let G be some metabelian 2-group satisfying the condition G/G’ ≃ ℤ/2ℤ × ℤ/2ℤ × ℤ/2ℤ. In this paper, we construct all the subgroups of G of index 2 or 4, we give the abelianization types of these subgroups and we compute the kernel of the transfer map. Then we apply these results to study the capitulation problem for the 2-ideal classes of some fields k satisfying the condition , where is the second Hilbert 2-class field of k.
Soient des nombres premiers tels que, et , où . Soient , , , le 2-corps de classes de Hilbert de et le corps de genres de . La 2-partie du groupe de classes de est de type , par suite contient sept extensions quadratiques non ramifiées et sept extensions biquadratiques non ramifiées . Dans ce papier on s’intéresse à déterminer ces quatorze extensions, le groupe et à étudier la capitulation des 2-classes d’idéaux de dans ces extensions.
We study the capitulation of -ideal classes of an infinite family of imaginary bicyclic biquadratic number fields consisting of fields , where and are different primes. For each of the three quadratic extensions inside the absolute genus field of , we determine a fundamental system of units and then compute the capitulation kernel of . The generators of the groups and are also determined from which we deduce that is smaller than the relative genus field . Then we prove that each...
Soient le corps quadratique réel (respectivement le corps biquadratique ), un entier positif sans facteur carré, une extension cubique cyclique non ramifiée de , diédrale sur totalement réelle, (respectivement diédrale sur .) On constate qu’on a deux structures possibles pour le groupe des unités de , notées et .
Let be a square free integer and . In the present work we determine all the fields such that the -class group, , of is of type or .
Let be an odd square-free integer, any integer and . In this paper, we shall determine all the fields having an odd class number. Furthermore, using the cyclotomic -extensions of some number fields, we compute the rank of the -class group of whenever the prime divisors of are congruent to or .
Let be a pure cubic field, with , where is a cube-free integer. We will determine the reduced ideals of the order of which coincides with the maximal order of in the case where is square-free and .
Let be an imaginary bicyclic biquadratic number field, where is an odd negative square-free integer and its second Hilbert -class field. Denote by the Galois group of . The purpose of this note is to investigate the Hilbert -class field tower of and then deduce the structure of .
Let be a number field with a 2-class group isomorphic to the Klein four-group. The aim of this paper is to give a characterization of capitulation types using group properties. Furthermore, as applications, we determine the structure of the second 2-class groups of some special Dirichlet fields , which leads to a correction of some parts in the main results of A. Azizi and A. Zekhini (2020).
Page 1 Next