Quasi periodic motions from Hipparchus to Kolmogorov
The evolution of the conception of motion as composed by circular uniform motions is analyzed, stressing its continuity from antiquity to our days.
The evolution of the conception of motion as composed by circular uniform motions is analyzed, stressing its continuity from antiquity to our days.
Dans cet article, nous étudions la réception des Éléments d’Euclide par un mathématicien du xiiie siècle : Campanus. Nous nous intéressons à la nature de son travail sur le LivreX, à propos de la théorie de l’irrationalité. Dans la version de Robert de Chester, que Campanus utilise pour son édition, apparaissent deux notions qui ne sont pas euclidiennes, celles de « droites rationnelles en longueur » et de « droites rationnelles en puissance ». Nous nous demandons si l’introduction de ces notions...
Le présent article porte sur le corpus de figures transmis dans les Livres I-IV du traité des Coniques d’Apollonios de Pergé (autour de 200 avant J.-C). On ne dispose pas de l’édition originale de ces quatre premiers Livres. Les traditions grecque et arabe ont transmis l’édition d’Eutocius d’Ascalon (vie siècle après J.-C.). Cette édition était accompagnée d’un commentaire que seule la tradition grecque nous a transmis. Après avoir rappelé l’usage de la géométrie grecque classique, l’auteur examine...
Aristotle and even earlier scientist and philosophers attempted to define, or at least to through light upon randomness. The author sketches the attempts to direct concept of randomness into the realm of mathematical science from Aristotle up to Poincaré. He dwells on the various interpretations of randomness that were pronounced in natural science and philosophy, and on the interrelation between necessity and randomness.
In the first part, we assume well known characteristics of ellipse which are given by triangle construction using main circles. We extend them on some lesser known features like Apollonius's theorem of associated radii of the ellipse. In the second part, we assume triangle construction of ellipse given by associated radii.
François Viète considered most of his mathematical treatises to be part of a body of texts he entitled Opus restitutæ mathematicæ analyseos seu algebra nova. Despite this title and the fact that the term “algebra” has often been used to designate what is customarily regarded as Viète’s main contribution to mathematics, such a term is not part of his vocabulary. How should we understand this term, in the context of the title of his Opus, where “new algebra” is identified with “restored analysis”?...