Interpolation in Logiken monotoner Systeme.
We consider the families 𝓛 of propositional superintuitionistic logics (s.i.l.) and NE(K) of normal modal logics (n.m.l.). It is well known that there is a duality between 𝓛 and the lattice of varieties of pseudo-boolean algebras (or Heyting algebras), and also NE(K) is dually isomorphic to the lattice of varieties of modal algebras. Many important properties of logics, for instance, Craig's interpolation property (CIP), the disjunction property (DP), the Beth property (BP), Hallden-completeness...
According to S. Krstić, there are only four quadratic varieties which are closed under isotopy. We give a simple procedure generating quadratic identities and deciding which of the four varieties they define. There are about 37000 such identities with up to five variables.
It is shown that in an elementary extension of a compact complex manifold M, the K-analytic sets (where K is the algebraic closure of the underlying real closed field) agree with the ccm-analytic sets if and only if M is essentially saturated. In particular, this is the case for compact Kähler manifolds.
For an arbitrary infinite cardinal , we define classes of -cslender and -tslender modules as well as related classes of -hmodules and initiate a study of these classes.
The author computes the Kleinberg sequences derived from the three different normal ultrafilters on δ₃¹.
We prove that the Krull-Gabriel dimension of the category of modules over any 1-domestic non-degenerate string algebra is 3.