Displaying 141 – 160 of 1342

Showing per page

An invariant for difference field extensions

Zoé Chatzidakis, Ehud Hrushovski (2012)

Annales de la faculté des sciences de Toulouse Mathématiques

In this paper we introduce a new invariant for extensions of difference fields, the distant degree, and discuss its properties.

An irrational problem

Franklin D. Tall (2002)

Fundamenta Mathematicae

Given a topological space ⟨X,⟩ ∈ M, an elementary submodel of set theory, we define X M to be X ∩ M with topology generated by U M : U M . Suppose X M is homeomorphic to the irrationals; must X = X M ? We have partial results. We also answer a question of Gruenhage by showing that if X M is homeomorphic to the “Long Cantor Set”, then X = X M .

An o-minimal structure which does not admit C cellular decomposition

Olivier Le Gal, Jean-Philippe Rolin (2009)

Annales de l’institut Fourier

We present an example of an o-minimal structure which does not admit C cellular decomposition. To this end, we construct a function H whose germ at the origin admits a C k representative for each integer k , but no C representative. A number theoretic condition on the coefficients of the Taylor series of H then insures the quasianalyticity of some differential algebras 𝒜 n ( H ) induced by H . The o-minimality of the structure generated by H is deduced from this quasianalyticity property.

An ordered structure of rank two related to Dulac's Problem

A. Dolich, P. Speissegger (2008)

Fundamenta Mathematicae

For a vector field ξ on ℝ² we construct, under certain assumptions on ξ, an ordered model-theoretic structure associated to the flow of ξ. We do this in such a way that the set of all limit cycles of ξ is represented by a definable set. This allows us to give two restatements of Dulac’s Problem for ξ - that is, the question whether ξ has finitely many limit cycles-in model-theoretic terms, one involving the recently developed notion of U þ -rank and the other involving the notion of o-minimality.

Currently displaying 141 – 160 of 1342