On the Maximum Genus of Some Graphs With Upper Imbeddable Subgraphs..
Let be a 3-connected planar graph, with . Let be a symmetric matrix with exactly one negative eigenvalue (of multiplicity 1), such that for with , if and are adjacent then and if and are nonadjacent then , and such that has rank . Then the null space of gives an embedding of in as follows: let be a basis of , and for let ; then , and embeds in such that connecting, for any two adjacent vertices , the points and by a shortest geodesic on , gives...
We prove the structural result on normal plane maps, which applies to the vertex distance colouring of plane maps. The vertex distance-t chromatic number of a plane graph G with maximum degree Δ(G) ≤ D, D ≥ 12 is proved to be upper bounded by . This improves a recent bound , D ≥ 8 by Jendrol’ and Skupień, and the upper bound for distance-2 chromatic number.
A subgraph of a plane graph is light if the sum of the degrees of the vertices of the subgraph in the graph is small. It is known that a plane graph of minimum face size 5 contains light paths and a light pentagon. In this paper we show that every plane graph of minimum face size 5 contains also a light star and we present a structural result concerning the existence of a pair of adjacent faces with degree-bounded vertices.
A nonempty vertex set X ⊆ V (G) of a hamiltonian graph G is called an H-force set of G if every X-cycle of G (i.e. a cycle of G containing all vertices of X) is hamiltonian. The H-force number h(G) of a graph G is defined to be the smallest cardinality of an H-force set of G. In the paper the study of this parameter is introduced and its value or a lower bound for outerplanar graphs, planar graphs, k-connected graphs and prisms over graphs is determined.