Biased positional games and small hypergraphs with large covers.
In this paper, we show that Qkn is a divisor graph, for n = 2, 3. For n ≥ 4, we show that Qkn is a divisor graph iff k ≥ n − 1. For folded-hypercube, we get FQn is a divisor graph when n is odd. But, if n ≥ 4 is even integer, then FQn is not a divisor graph. For n ≥ 5, we show that (FQn)k is not a divisor graph, where 2 ≤ k ≤ [n/2] − 1.
In this paper we present some hypergraphs which are chromatically characterized by their chromatic polynomials. It occurs that these hypergraphs are chromatically unique. Moreover we give some equalities for the chromatic polynomials of hypergraphs generalizing known results for graphs and hypergraphs of Read and Dohmen.
We color the vertices of each of the edges of a C-hypergraph (or cohypergraph) in such a way that at least two vertices receive the same color and in every proper coloring of a B-hypergraph (or bihypergraph), we forbid the cases when the vertices of any of its edges are colored with the same color (monochromatic) or when they are all colored with distinct colors (rainbow). In this paper, we determined explicit formulae for the chromatic polynomials of C-hypercycles and B-hypercycles
A hypergraph ℋ is a sum hypergraph iff there are a finite S ⊆ ℕ⁺ and d̲,d̅ ∈ ℕ⁺ with 1 < d̲ < d̅ such that ℋ is isomorphic to the hypergraph where V = S and . For an arbitrary hypergraph ℋ the sum number(ℋ ) is defined to be the minimum number of isolatedvertices such that is a sum hypergraph. For graphs it is known that cycles Cₙ and wheels Wₙ have sum numbersgreater than one. Generalizing these graphs we prove for the hypergraphs ₙ and ₙ that under a certain condition for the edgecardinalities...
A color-bounded hypergraph is a hypergraph (set system) with vertex set X and edge set = E₁,...,Eₘ, together with integers and satisfying for each i = 1,...,m. A vertex coloring φ is proper if for every i, the number of colors occurring in edge satisfies . The hypergraph ℋ is colorable if it admits at least one proper coloring. We consider hypergraphs ℋ over a “host graph”, that means a graph G on the same vertex set X as ℋ, such that each induces a connected subgraph in G. In the current...
If D = (V,A) is a digraph, its competition hypergraph (D) has vertex set V and e ⊆ V is an edge of (D) iff |e| ≥ 2 and there is a vertex v ∈ V, such that . We give characterizations of (D) in case of hamiltonian digraphs D and, more general, of digraphs D having a τ-cycle factor. The results are closely related to the corresponding investigations for competition graphs in Fraughnaugh et al. [4] and Guichard [6].
If D = (V,A) is a digraph, its competition hypergraph 𝓒𝓗(D) has the vertex set V and e ⊆ V is an edge of 𝓒𝓗(D) iff |e| ≥ 2 and there is a vertex v ∈ V, such that e = {w ∈ V|(w,v) ∈ A}. We tackle the problem to minimize the number of strong components in D without changing the competition hypergraph 𝓒𝓗(D). The results are closely related to the corresponding investigations for competition graphs in Fraughnaugh et al. [3].
Compositional models are used to construct probability distributions from lower-order probability distributions. On the other hand, Bayesian models are used to represent probability distributions that factorize according to acyclic digraphs. We introduce a class of models, called recursive factorization models, to represent probability distributions that recursively factorize according to sequences of sets of variables, and prove that they have the same representation power as both compositional...
A constrained colouring or, more specifically, an (α, β)-colouring of a hypergraph H, is an assignment of colours to its vertices such that no edge of H contains less than α or more than β vertices with different colours. This notion, introduced by Bujtás and Tuza, generalises both classical hypergraph colourings and more general Voloshin colourings of hypergraphs. In fact, for r-uniform hypergraphs, classical colourings correspond to (2, r)-colourings while an important instance of Voloshin colourings...
An abstract convexity space on a connected hypergraph H with vertex set V (H) is a family C of subsets of V (H) (to be called the convex sets of H) such that: (i) C contains the empty set and V (H), (ii) C is closed under intersection, and (iii) every set in C is connected in H. A convex set X of H is a minimal vertex convex separator of H if there exist two vertices of H that are separated by X and are not separated by any convex set that is a proper subset of X. A nonempty subset X of V (H) is...
Using the general hypergraph technique developed in [7], we first give a much simpler proof of Shultz's theorem [10]: Each compact convex set is affinely homeomorphic to the state space of an orthomodular lattice. We also present partial solutions to open questions formulated in [10] - we show that not every compact convex set has to be a state space of a unital orthomodular lattice and that for unital orthomodular lattices the state space characterization can be obtained in the context of unital...