The IC-indices of complete bipartite graphs.
An incidence in a graph G is a pair (v, e) with v ∈ V (G) and e ∈ E(G), such that v and e are incident. Two incidences (v, e) and (w, f) are adjacent if v = w, or e = f, or the edge vw equals e or f. The incidence chromatic number of G is the smallest k for which there exists a mapping from the set of incidences of G to a set of k colors that assigns distinct colors to adjacent incidences. In this paper, we prove that the incidence chromatic number of the toroidal grid Tm,n = Cm2Cn equals 5 when...
We prove a two-point concentration for the independent domination number of the random graph provided p²ln(n) ≥ 64ln((lnn)/p).
For an ordered set of vertices in a connected graph and a vertex of , the code of with respect to is the -vector The set is an independent resolving set for if (1) is independent in and (2) distinct vertices have distinct codes with respect to . The cardinality of a minimum independent resolving set in is the independent resolving number . We study the existence of independent resolving sets in graphs, characterize all nontrivial connected graphs of order with , ,...
By a ternary structure we mean an ordered pair , where is a finite nonempty set and is a ternary relation on . By the underlying graph of a ternary structure we mean the (undirected) graph with the properties that is its vertex set and distinct vertices and of are adjacent if and only if A ternary structure is said to be the B-structure of a connected graph if is the vertex set of and the following statement holds for all : if and only if belongs to an induced ...
Let G be a graph with n vertices and ν(G) be the matching number of G. The inertia of a graph G, In(G) = (n₊,n₋,n₀) is an integer triple specifying the numbers of positive, negative and zero eigenvalues of the adjacency matrix A(G), respectively. Let η(G) = n₀ denote the nullity of G (the multiplicity of the eigenvalue zero of G). It is well known that if G is a tree, then η(G) = n - 2ν(G). Guo et al. [Ji-Ming Guo, Weigen Yan and Yeong-Nan Yeh. On the nullity and the matching number of unicyclic...
The interval function (in the sense of H. M. Mulder) is an important tool for studying those properties of a connected graph that depend on the distance between vertices. An axiomatic characterization of the interval function of a connected graph was published by Nebeský in 1994. In Section 2 of the present paper, a simpler and shorter proof of that characterization will be given. In Section 3, a characterization of geodetic graphs will be established; this characterization will utilize properties...
The irregularity of a simple undirected graph G was defined by Albertson [5] as irr(G) = ∑uv∈E(G) |dG(u) − dG(v)|, where dG(u) denotes the degree of a vertex u ∈ V (G). In this paper we consider the irregularity of graphs under several graph operations including join, Cartesian product, direct product, strong product, corona product, lexicographic product, disjunction and sym- metric difference. We give exact expressions or (sharp) upper bounds on the irregularity of graphs under the above mentioned...