Displaying 301 – 320 of 724

Showing per page

A note on the open packing number in graphs

Mehdi Mohammadi, Mohammad Maghasedi (2019)

Mathematica Bohemica

A subset S of vertices in a graph G is an open packing set if no pair of vertices of S has a common neighbor in G . An open packing set which is not a proper subset of any open packing set is called a maximal open packing set. The maximum cardinality of an open packing set is called the open packing number and is denoted by ρ o ( G ) . A subset S in a graph G with no isolated vertex is called a total dominating set if any vertex of G is adjacent to some vertex of S . The total domination number of G , denoted...

A Note on the Permanental Roots of Bipartite Graphs

Heping Zhang, Shunyi Liu, Wei Li (2014)

Discussiones Mathematicae Graph Theory

It is well-known that any graph has all real eigenvalues and a graph is bipartite if and only if its spectrum is symmetric with respect to the origin. We are interested in finding whether the permanental roots of a bipartite graph G have symmetric property as the spectrum of G. In this note, we show that the permanental roots of bipartite graphs are symmetric with respect to the real and imaginary axes. Furthermore, we prove that any graph has no negative real permanental root, and any graph containing...

A note on the size Ramsey numbers for matchings versus cycles

Edy Tri Baskoro, Tomáš Vetrík (2021)

Mathematica Bohemica

For graphs G , F 1 , F 2 , we write G ( F 1 , F 2 ) if for every red-blue colouring of the edge set of G we have a red copy of F 1 or a blue copy of F 2 in G . The size Ramsey number r ^ ( F 1 , F 2 ) is the minimum number of edges of a graph G such that G ( F 1 , F 2 ) . Erdős and Faudree proved that for the cycle C n of length n and for t 2 matchings t K 2 , the size Ramsey number r ^ ( t K 2 , C n ) < n + ( 4 t + 3 ) n . We improve their upper bound for t = 2 and t = 3 by showing that r ^ ( 2 K 2 , C n ) n + 2 3 n + 9 for n 12 and r ^ ( 3 K 2 , C n ) < n + 6 n + 9 for n 25 .

A note on the Size-Ramsey number of long subdivisions of graphs

Jair Donadelli, Penny E. Haxell, Yoshiharu Kohayakawa (2005)

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications

Let T s H be the graph obtained from a given graph H by subdividing each edge s times. Motivated by a problem raised by Igor Pak [Mixing time and long paths in graphs, in Proc. of the 13th annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2002) 321–328], we prove that, for any graph H , there exist graphs G with O ( s ) edges that are Ramsey with respect to T s H .

A note on the Size-Ramsey number of long subdivisions of graphs

Jair Donadelli, Penny E. Haxell, Yoshiharu Kohayakawa (2010)

RAIRO - Theoretical Informatics and Applications

Let TsH be the graph obtained from a given graph H by subdividing each edge s times. Motivated by a problem raised by Igor Pak [Mixing time and long paths in graphs, in Proc. of the 13th annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2002) 321–328], we prove that, for any graph H, there exist graphs G with O(s) edges that are Ramsey with respect to TsH.

A note on the Song-Zhang theorem for Hamiltonian graphs

Kewen Zhao, Ronald J. Gould (2010)

Colloquium Mathematicae

An independent set S of a graph G is said to be essential if S has a pair of vertices that are distance two apart in G. In 1994, Song and Zhang proved that if for each independent set S of cardinality k+1, one of the following condition holds: (i) there exist u ≠ v ∈ S such that d(u) + d(v) ≥ n or |N(u) ∩ N(v)| ≥ α (G); (ii) for any distinct u and v in S, |N(u) ∪ N(v)| ≥ n - max{d(x): x ∈ S}, then G is Hamiltonian. We prove that if for each essential...

A Note on the Total Detection Numbers of Cycles

Henry E. Escuadro, Futaba Fujie, Chad E. Musick (2015)

Discussiones Mathematicae Graph Theory

Let G be a connected graph of size at least 2 and c :E(G)→{0, 1, . . . , k− 1} an edge coloring (or labeling) of G using k labels, where adjacent edges may be assigned the same label. For each vertex v of G, the color code of v with respect to c is the k-vector code(v) = (a0, a1, . . . , ak−1), where ai is the number of edges incident with v that are labeled i for 0 ≤ i ≤ k − 1. The labeling c is called a detectable labeling if distinct vertices in G have distinct color codes. The value val(c) of...

A Note on the Uniqueness of Stable Marriage Matching

Ewa Drgas-Burchardt (2013)

Discussiones Mathematicae Graph Theory

In this note we present some sufficient conditions for the uniqueness of a stable matching in the Gale-Shapley marriage classical model of even size. We also state the result on the existence of exactly two stable matchings in the marriage problem of odd size with the same conditions.

A note on total colorings of planar graphs without 4-cycles

Ping Wang, Jian-Liang Wu (2004)

Discussiones Mathematicae Graph Theory

Let G be a 2-connected planar graph with maximum degree Δ such that G has no cycle of length from 4 to k, where k ≥ 4. Then the total chromatic number of G is Δ +1 if (Δ,k) ∈ {(7,4),(6,5),(5,7),(4,14)}.

A Note on Total Graphs

S.F. Forouhandeh, N. Jafari Rad, B.H. Vaqari Motlagh, H.P. Patil, R. Pandiya Raj (2015)

Discussiones Mathematicae Graph Theory

Erratum Identification and corrections of the existing mistakes in the paper On the total graph of Mycielski graphs, central graphs and their covering numbers, Discuss. Math. Graph Theory 33 (2013) 361-371.

Currently displaying 301 – 320 of 724