Displaying 321 – 340 of 908

Showing per page

On k -ordered bipartite graphs.

Faudree, Jill R., Gould, Ronald J., Pfender, Florian, Wolf, Allison (2003)

The Electronic Journal of Combinatorics [electronic only]

On k -pairable graphs from trees

Zhongyuan Che (2007)

Czechoslovak Mathematical Journal

The concept of the k -pairable graphs was introduced by Zhibo Chen (On k -pairable graphs, Discrete Mathematics 287 (2004), 11–15) as an extension of hypercubes and graphs with an antipodal isomorphism. In the same paper, Chen also introduced a new graph parameter p ( G ) , called the pair length of a graph G , as the maximum k such that G is k -pairable and p ( G ) = 0 if G is not k -pairable for any positive integer k . In this paper, we answer the two open questions raised by Chen in the case that the graphs involved...

On k -strong distance in strong digraphs

Ping Zhang (2002)

Mathematica Bohemica

For a nonempty set S of vertices in a strong digraph D , the strong distance d ( S ) is the minimum size of a strong subdigraph of D containing the vertices of S . If S contains k vertices, then d ( S ) is referred to as the k -strong distance of S . For an integer k 2 and a vertex v of a strong digraph D , the k -strong eccentricity s e k ( v ) of v is the maximum k -strong distance d ( S ) among all sets S of k vertices in D containing v . The minimum k -strong eccentricity among the vertices of D is its k -strong radius s r a d k D and the maximum...

On kaleidoscopic pseudo-randomness of finite Euclidean graphs

Le Anh Vinh (2012)

Discussiones Mathematicae Graph Theory

D. Hart, A. Iosevich, D. Koh, S. Senger and I. Uriarte-Tuero (2008) showed that the distance graphs has kaleidoscopic pseudo-random property, i.e. sufficiently large subsets of d-dimensional vector spaces over finite fields contain every possible finite configurations. In this paper we study the kaleidoscopic pseudo-randomness of finite Euclidean graphs using probabilistic methods.

On kernels by monochromatic paths in the corona of digraphs

Iwona Włoch (2008)

Open Mathematics

In this paper we derive necessary and sufficient conditions for the existence of kernels by monochromatic paths in the corona of digraphs. Using these results, we are able to prove the main result of this paper which provides necessary and sufficient conditions for the corona of digraphs to be monochromatic kernel-perfect. Moreover we calculate the total numbers of kernels by monochromatic paths, independent by monochromatic paths sets and dominating by monochromatic paths sets in this digraphs...

On k-factor-critical graphs

Odile Favaron (1996)

Discussiones Mathematicae Graph Theory

A graph is said to be k-factor-critical if the removal of any set of k vertices results in a graph with a perfect matching. We study some properties of k-factor-critical graphs and show that many results on q-extendable graphs can be improved using this concept.

On k-intersection edge colourings

Rahul Muthu, N. Narayanan, C.R. Subramanian (2009)

Discussiones Mathematicae Graph Theory

We propose the following problem. For some k ≥ 1, a graph G is to be properly edge coloured such that any two adjacent vertices share at most k colours. We call this the k-intersection edge colouring. The minimum number of colours sufficient to guarantee such a colouring is the k-intersection chromatic index and is denoted χ’ₖ(G). Let fₖ be defined by f ( Δ ) = m a x G : Δ ( G ) = Δ χ ' ( G ) . We show that fₖ(Δ) = Θ(Δ²/k). We also discuss some open problems.

On (k,l)-kernel perfectness of special classes of digraphs

Magdalena Kucharska (2005)

Discussiones Mathematicae Graph Theory

In the first part of this paper we give necessary and sufficient conditions for some special classes of digraphs to have a (k,l)-kernel. One of them is the duplication of a set of vertices in a digraph. This duplication come into being as the generalization of the duplication of a vertex in a graph (see [4]). Another one is the D-join of a digraph D and a sequence α of nonempty pairwise disjoint digraphs. In the second part we prove theorems, which give necessary and sufficient conditions for special...

On (k,l)-kernels in D-join of digraphs

Waldemar Szumny, Andrzej Włoch, Iwona Włoch (2007)

Discussiones Mathematicae Graph Theory

In [5] the necessary and sufficient conditions for the existence of (k,l)-kernels in a D-join of digraphs were given if the digraph D is without circuits of length less than k. In this paper we generalize these results for an arbitrary digraph D. Moreover, we give the total number of (k,l)-kernels, k-independent sets and l-dominating sets in a D-join of digraphs.

On (k,l)-kernels of special superdigraphs of Pₘ and Cₘ

Magdalena Kucharska, Maria Kwaśnik (2001)

Discussiones Mathematicae Graph Theory

The concept of (k,l)-kernels of digraphs was introduced in [2]. Next, H. Galeana-Sanchez [4] proved a sufficient condition for a digraph to have a (k,l)-kernel. The result generalizes the well-known theorem of P. Duchet and it is formulated in terms of symmetric pairs of arcs. Our aim is to give necessary and sufficient conditions for digraphs without symmetric pairs of arcs to have a (k,l)-kernel. We restrict our attention to special superdigraphs of digraphs Pₘ and Cₘ.

On k-Path Pancyclic Graphs

Zhenming Bi, Ping Zhang (2015)

Discussiones Mathematicae Graph Theory

For integers k and n with 2 ≤ k ≤ n − 1, a graph G of order n is k-path pancyclic if every path P of order k in G lies on a cycle of every length from k + 1 to n. Thus a 2-path pancyclic graph is edge-pancyclic. In this paper, we present sufficient conditions for graphs to be k-path pancyclic. For a graph G of order n ≥ 3, we establish sharp lower bounds in terms of n and k for (a) the minimum degree of G, (b) the minimum degree-sum of nonadjacent vertices of G and (c) the size of G such that G...

On Laplacian eigenvalues of connected graphs

Igor Ž. Milovanović, Emina I. Milovanović, Edin Glogić (2015)

Czechoslovak Mathematical Journal

Let G be an undirected connected graph with n , n 3 , vertices and m edges with Laplacian eigenvalues μ 1 μ 2 μ n - 1 > μ n = 0 . Denote by μ I = μ r 1 + μ r 2 + + μ r k , 1 k n - 2 , 1 r 1 < r 2 < < r k n - 1 , the sum of k arbitrary Laplacian eigenvalues, with μ I 1 = μ 1 + μ 2 + + μ k and μ I n = μ n - k + + μ n - 1 . Lower bounds of graph invariants μ I 1 - μ I n and μ I 1 / μ I n are obtained. Some known inequalities follow as a special case.

Currently displaying 321 – 340 of 908