Displaying 881 – 900 of 5365

Showing per page

Capacités de Choquet finies et profinies

Pablo Dartnell, Gérard Michon (1998)

Annales de l'institut Fourier

On définit les capacités de Choquet dans le cas fini en utilisant une forme bilinéaire non dégénérée associée à la base de Choquet. On montre que, dans le cas fini, une capacité de Choquet est la donnée d’un convexe de mesure qu’on caractérise. Le cas profini, issu des arbres, est obtenu par passage à la limite projective du cas fini. Sur les capacités profinies, on définit une forme bilinéaire dont le rapport avec l’intégration, dans des cas simples, est étudié.

Cardinality of a minimal forbidden graph family for reducible additive hereditary graph properties

Ewa Drgas-Burchardt (2009)

Discussiones Mathematicae Graph Theory

An additive hereditary graph property is any class of simple graphs, which is closed under isomorphisms unions and taking subgraphs. Let L a denote a class of all such properties. In the paper, we consider H-reducible over L a properties with H being a fixed graph. The finiteness of the sets of all minimal forbidden graphs is analyzed for such properties.

Cardinality of height function’s range in case of maximally many rectangular islands - computed by cuts

Eszter Horváth, Branimir Šešelja, Andreja Tepavčević (2013)

Open Mathematics

We deal with rectangular m×n boards of square cells, using the cut technics of the height function. We investigate combinatorial properties of this function, and in particular we give lower and upper bounds for the number of essentially different cuts. This number turns out to be the cardinality of the height function’s range, in case the height function has maximally many rectangular islands.

Categorification of Hopf algebras of rooted trees

Joachim Kock (2013)

Open Mathematics

We exhibit a monoidal structure on the category of finite sets indexed by P-trees for a finitary polynomial endofunctor P. This structure categorifies the monoid scheme (over Spec ℕ) whose semiring of functions is (a P-version of) the Connes-Kreimer bialgebra H of rooted trees (a Hopf algebra after base change to ℤ and collapsing H 0). The monoidal structure is itself given by a polynomial functor, represented by three easily described set maps; we show that these maps are the same as those occurring...

Caterpillars

Bohdan Zelinka (1977)

Časopis pro pěstování matematiky

Cayley color graphs of inverse semigroups and groupoids

Nándor Sieben (2008)

Czechoslovak Mathematical Journal

The notion of Cayley color graphs of groups is generalized to inverse semigroups and groupoids. The set of partial automorphisms of the Cayley color graph of an inverse semigroup or a groupoid is isomorphic to the original inverse semigroup or groupoid. The groupoid of color permuting partial automorphisms of the Cayley color graph of a transitive groupoid is isomorphic to the original groupoid.

Centers of n-fold tensor products of graphs

Sarah Bendall, Richard Hammack (2004)

Discussiones Mathematicae Graph Theory

Formulas for vertex eccentricity and radius for the n-fold tensor product G = i = 1 G i of n arbitrary simple graphs G i are derived. The center of G is characterized as the union of n+1 vertex sets of form V₁×V₂×...×Vₙ, with V i V ( G i ) .

Centralité et compacité d'un graphe

P. Parlebas (1972)

Mathématiques et Sciences Humaines

Un grand nombre de situations de psychologie sociale peuvent être interprétées en termes de graphe, notamment celles qui traitent des phénomènes de relation et de communication. Les travaux de A. Bavelas et H. Leavitt ont révélé l'influence des différents types de réseaux sur le comportement des groupes ; ils ont mis en pleine lumière l'intérêt de la notion de centralité. Les recherches de C. Flament ont enrichi et fortement nuancé ces résultats en faisant apparaître le poids de la nature de la...

Centrosymmetric Graphs And A Lower Bound For Graph Energy Of Fullerenes

Gyula Y. Katona, Morteza Faghani, Ali Reza Ashrafi (2014)

Discussiones Mathematicae Graph Theory

The energy of a molecular graph G is defined as the summation of the absolute values of the eigenvalues of adjacency matrix of a graph G. In this paper, an infinite class of fullerene graphs with 10n vertices, n ≥ 2, is considered. By proving centrosymmetricity of the adjacency matrix of these fullerene graphs, a lower bound for its energy is given. Our method is general and can be extended to other class of fullerene graphs.

Currently displaying 881 – 900 of 5365