Erdős-Renyi random graphs forest fires self-organized criticality.
We define the magnetic Schrödinger operator on an infinite graph by the data of a magnetic field, some weights on vertices and some weights on edges. We discuss essential self-adjointness of this operator for graphs of bounded degree. The main result is a discrete version of a result of two authors of the present paper.
We show that for every minimum eternal dominating set, D, of a graph G and every vertex v ∈ D, there is a sequence of attacks at the vertices of G which can be defended in such a way that an eternal dominating set not containing v is reached. The study of the stronger assertion that such a set can be reached after a single attack is defended leads to the study of graphs which are critical in the sense that deleting any vertex reduces the eternal domination number. Examples of these graphs and tight...
Let be the least number for which there exists a simple graph with vertices having precisely spanning trees. Similarly, define as the least number for which there exists a simple graph with edges having precisely spanning trees. As an -cycle has exactly spanning trees, it follows that . In this paper, we show that and if and only if , which is a subset of Euler’s idoneal numbers. Moreover, if and we show that and This improves some previously estabilished bounds.