Displaying 161 – 180 of 224

Showing per page

Even [a,b]-factors in graphs

Mekkia Kouider, Preben Dahl Vestergaard (2004)

Discussiones Mathematicae Graph Theory

Let a and b be integers 4 ≤ a ≤ b. We give simple, sufficient conditions for graphs to contain an even [a,b]-factor. The conditions are on the order and on the minimum degree, or on the edge-connectivity of the graph.

Even factor of bridgeless graphs containing two specified edges

Nastaran Haghparast, Dariush Kiani (2018)

Czechoslovak Mathematical Journal

An even factor of a graph is a spanning subgraph in which each vertex has a positive even degree. Let G be a bridgeless simple graph with minimum degree at least 3 . Jackson and Yoshimoto (2007) showed that G has an even factor containing two arbitrary prescribed edges. They also proved that G has an even factor in which each component has order at least four. Moreover, Xiong, Lu and Han (2009) showed that for each pair of edges e 1 and e 2 of G , there is an even factor containing e 1 and e 2 in which each...

Exact 2 -step domination in graphs

Gary Chartrand, Frank Harary, Moazzem Hossain, Kelly Schultz (1995)

Mathematica Bohemica

For a vertex v in a graph G , the set N 2 ( v ) consists of those vertices of G whose distance from v is 2. If a graph G contains a set S of vertices such that the sets N 2 ( v ) , v S , form a partition of V ( G ) , then G is called a 2 -step domination graph. We describe 2 -step domination graphs possessing some prescribed property. In addition, all 2 -step domination paths and cycles are determined.

Exact double domination in graphs

Mustapha Chellali, Abdelkader Khelladi, Frédéric Maffray (2005)

Discussiones Mathematicae Graph Theory

In a graph a vertex is said to dominate itself and all its neighbours. A doubly dominating set of a graph G is a subset of vertices that dominates every vertex of G at least twice. A doubly dominating set is exact if every vertex of G is dominated exactly twice. We prove that the existence of an exact doubly dominating set is an NP-complete problem. We show that if an exact double dominating set exists then all such sets have the same size, and we establish bounds on this size. We give a constructive...

Exact Expectation and Variance of Minimal Basis of Random Matroids

Wojciech Kordecki, Anna Lyczkowska-Hanćkowiak (2013)

Discussiones Mathematicae Graph Theory

We formulate and prove a formula to compute the expected value of the minimal random basis of an arbitrary finite matroid whose elements are assigned weights which are independent and uniformly distributed on the interval [0, 1]. This method yields an exact formula in terms of the Tutte polynomial. We give a simple formula to find the minimal random basis of the projective geometry PG(r − 1, q).

Existence of graphs with sub exponential transitions probability decay and applications

Clément Rau (2010)

Bulletin de la Société Mathématique de France

In this paper, we recall the existence of graphs with bounded valency such that the simple random walk has a return probability at time n at the origin of order exp ( - n α ) , for fixed α [ 0 , 1 [ and with Følner function exp ( n 2 α 1 - α ) . This result was proved by Erschler (see [4], [3]); we give a more detailed proof of this construction in the appendix. In the second part, we give an application of the existence of such graphs. We obtain bounds of the correct order for some functional of the local time of a simple random walk on...

Existence of perfect matchings in a plane bipartite graph

Zhongyuan Che (2010)

Czechoslovak Mathematical Journal

We give a necessary and sufficient condition for the existence of perfect matchings in a plane bipartite graph in terms of elementary edge-cut, which extends the result for the existence of perfect matchings in a hexagonal system given in the paper of F. Zhang, R. Chen and X. Guo (1985).

Currently displaying 161 – 180 of 224