Displaying 221 – 240 of 388

Showing per page

On the Diophantine equation q n - 1 q - 1 = y

Amir Khosravi, Behrooz Khosravi (2003)

Commentationes Mathematicae Universitatis Carolinae

There exist many results about the Diophantine equation ( q n - 1 ) / ( q - 1 ) = y m , where m 2 and n 3 . In this paper, we suppose that m = 1 , n is an odd integer and q a power of a prime number. Also let y be an integer such that the number of prime divisors of y - 1 is less than or equal to 3 . Then we solve completely the Diophantine equation ( q n - 1 ) / ( q - 1 ) = y for infinitely many values of y . This result finds frequent applications in the theory of finite groups.

On the diophantine equation w+x+y = z, with wxyz = 2r 3s 5t.

L. J. Alex, L. L. Foster (1995)

Revista Matemática de la Universidad Complutense de Madrid

In this paper we complete the solution to the equation w+x+y = z, where w, x, y, and z are positive integers and wxyz has the form 2r 3s 5t, with r, s, and t non negative integers. Here we consider the case 1 < w ≤ x ≤ y, the remaining case having been dealt with in our paper: On the Diophantine equation 1+ X + Y = Z, Rocky Mountain J. of Math. This work extends earlier work of the authors in the field of exponential Diophantine equations.

On the diophantine equation x 2 + 2 a 3 b 73 c = y n

Murat Alan, Mustafa Aydin (2023)

Archivum Mathematicum

In this paper, we find all integer solutions ( x , y , n , a , b , c ) of the equation in the title for non-negative integers a , b and c under the condition that the integers x and y are relatively prime and n 3 . The proof depends on the famous primitive divisor theorem due to Bilu, Hanrot and Voutier and the computational techniques on some elliptic curves.

On the Diophantine equation x 2 + 2 α 5 β 17 γ = y n

Hemar Godinho, Diego Marques, Alain Togbé (2012)

Communications in Mathematics

In this paper, we find all solutions of the Diophantine equation x 2 + 2 α 5 β 17 γ = y n in positive integers x , y 1 , α , β , γ , n 3 with gcd ( x , y ) = 1 .

On the diophantine equation x 2 + 5 k 17 l = y n

István Pink, Zsolt Rábai (2011)

Communications in Mathematics

Consider the equation in the title in unknown integers ( x , y , k , l , n ) with x 1 , y > 1 , n 3 , k 0 , l 0 and gcd ( x , y ) = 1 . Under the above conditions we give all solutions of the title equation (see Theorem 1).

On the Diophantine equation x 2 - k x y + y 2 - 2 n = 0

Refik Keskin, Zafer Şiar, Olcay Karaatlı (2013)

Czechoslovak Mathematical Journal

In this study, we determine when the Diophantine equation x 2 - k x y + y 2 - 2 n = 0 has an infinite number of positive integer solutions x and y for 0 n 10 . Moreover, we give all positive integer solutions of the same equation for 0 n 10 in terms of generalized Fibonacci sequence. Lastly, we formulate a conjecture related to the Diophantine equation x 2 - k x y + y 2 - 2 n = 0 .

Currently displaying 221 – 240 of 388