Parametrized solutions of Diophantine equations
In this paper, we find all Pell and Pell-Lucas numbers written in the form , in nonnegative integers , , , with .
We show that the generalized Fermat equations with signatures (5,5,7), (5,5,19), and (7,7,5) (and unit coefficients) have no non-trivial primitive integer solutions. Assuming GRH, we also prove the non-existence of non-trivial primitive integer solutions for the signatures (5,5,11), (5,5,13), and (7,7,11). The main ingredients for obtaining our results are descent techniques, the method of Chabauty-Coleman, and the modular approach to Diophantine equations.
Let be the sequence given by and for . In this paper, we show that the only solution of the equationis in positive integers and is .
Soit une courbe elliptique sur par un modèle de Weierstrass généralisé :Soit avec , un point rationnel sur cette courbe. Pour tout entier , on exprime les coordonnées de sous la forme :où et , , sont déduits par multiplication par des puissances convenables de .Soit un nombre premier impair et supposons que est non singulier et que le rang d’apparition de dans la suite d’entiers est supérieur ou égal à trois. Notons ce rang par et soit . Nous montrons que la suite ...