Formes modulaires de poids
Taking advantage of methods originating with quantization theory, we try to get some better hold - if not an actual construction - of Maass (non-holomorphic) cusp-forms. We work backwards, from the rather simple results to the mostly devious road used to prove them.
This paper contains an application of Langlands’ functoriality principle to the following classical problem: which finite groups, in particular which simple groups appear as Galois groups over ? Let be a prime and a positive integer. We show that that the finite simple groups of Lie type if and appear as Galois groups over , for some divisible by . In particular, for each of the two Lie types and fixed we construct infinitely many Galois groups but we do not have a precise control...
We give a geometric interpretation of an arithmetic rule to generate explicit formulas for the Fourier coefficients of elliptic modular forms and their associated Jacobi forms. We discuss applications of these formulas and derive as an example a criterion similar to Tunnel's criterion for a number to be a congruent number.
Let be a Hecke–Maass cusp form of eigenvalue and square-free level . Normalize the hyperbolic measure such that and the form such that . It is shown that for all . This generalizes simultaneously the current best bounds in the eigenvalue and level aspects.
We give a combinatorial interpretation for the positive moments of the values at the edge of the critical strip of the -functions of modular forms of and . We deduce some results about the asymptotics of these moments. We extend this interpretation to the moments twisted by the eigenvalues of Hecke operators.
Ce texte est consacré au système d’Euler de Kato, construit à partir des unités modulaires, et à son image par l’application exponentielle duale (loi de réciprocité explicite de Kato). La présentation que nous en donnons est sensiblement différente de la présentation originelle de Kato.