Displaying 41 – 60 of 142

Showing per page

From pseudodifferential analysis to modular form theory

André Unterberger (1999)

Journées équations aux dérivées partielles

Taking advantage of methods originating with quantization theory, we try to get some better hold - if not an actual construction - of Maass (non-holomorphic) cusp-forms. We work backwards, from the rather simple results to the mostly devious road used to prove them.

Functoriality and the Inverse Galois problem II: groups of type B n and G 2

Chandrashekhar Khare, Michael Larsen, Gordan Savin (2010)

Annales de la faculté des sciences de Toulouse Mathématiques

This paper contains an application of Langlands’ functoriality principle to the following classical problem: which finite groups, in particular which simple groups appear as Galois groups over ? Let be a prime and t a positive integer. We show that that the finite simple groups of Lie type B n ( k ) = 3 D S O 2 n + 1 ( 𝔽 k ) d e r if 3 , 5 ( mod 8 ) and G 2 ( k ) appear as Galois groups over , for some k divisible by t . In particular, for each of the two Lie types and fixed we construct infinitely many Galois groups but we do not have a precise control...

Heegner cycles, modular forms and jacobi forms

Nils-Peter Skoruppa (1991)

Journal de théorie des nombres de Bordeaux

We give a geometric interpretation of an arithmetic rule to generate explicit formulas for the Fourier coefficients of elliptic modular forms and their associated Jacobi forms. We discuss applications of these formulas and derive as an example a criterion similar to Tunnel's criterion for a number to be a congruent number.

Hybrid sup-norm bounds for Hecke–Maass cusp forms

Nicolas Templier (2015)

Journal of the European Mathematical Society

Let f be a Hecke–Maass cusp form of eigenvalue λ and square-free level N . Normalize the hyperbolic measure such that vol ( Y 0 ( N ) ) = 1 and the form f such that f 2 = 1 . It is shown that f ϵ λ 5 24 + ϵ N 1 3 + ϵ for all ϵ > 0 . This generalizes simultaneously the current best bounds in the eigenvalue and level aspects.

L -functions of automorphic forms and combinatorics: Dyck paths

Laurent Habsieger, Emmanuel Royer (2004)

Annales de l'Institut Fourier

We give a combinatorial interpretation for the positive moments of the values at the edge of the critical strip of the L -functions of modular forms of G L ( 2 ) and G L ( 3 ) . We deduce some results about the asymptotics of these moments. We extend this interpretation to the moments twisted by the eigenvalues of Hecke operators.

Le système d’Euler de Kato

Shanwen Wang (2013)

Journal de Théorie des Nombres de Bordeaux

Ce texte est consacré au système d’Euler de Kato, construit à partir des unités modulaires, et à son image par l’application exponentielle duale (loi de réciprocité explicite de Kato). La présentation que nous en donnons est sensiblement différente de la présentation originelle de Kato.

Metaplectic forms

David A. Kazhdan, S. J. Patterson (1984)

Publications Mathématiques de l'IHÉS

Currently displaying 41 – 60 of 142