Displaying 121 – 140 of 161

Showing per page

Sign changes of certain arithmetical function at prime powers

Rishabh Agnihotri, Kalyan Chakraborty (2021)

Czechoslovak Mathematical Journal

We examine an arithmetical function defined by recursion relations on the sequence { f ( p k ) } k and obtain sufficient condition(s) for the sequence to change sign infinitely often. As an application we give criteria for infinitely many sign changes of Chebyshev polynomials and that of sequence formed by the Fourier coefficients of a cusp form.

Special values of multiple gamma functions

William Duke, Özlem Imamoḡlu (2006)

Journal de Théorie des Nombres de Bordeaux

We give a Chowla-Selberg type formula that connects a generalization of the eta-function to GL ( n ) with multiple gamma functions. We also present some simple infinite product identities for certain special values of the multiple gamma function.

Sur une condition suffisante pour l’existence de mesures p -adiques admissibles

Alexei Panchishkin (2003)

Journal de théorie des nombres de Bordeaux

On donne une nouvelle condition suffisante pour l’existence des mesures p -adiques admissibles μ obtenues à partir de suites de distributions Φ j ( j 0 ) à valeurs dans les espaces de formes modulaires. On utilise la projection caractéristique sur le sous-espace primaire associé à une valeur propre non nulle α de l’opérateur U d’Atkin. Notre condition est exprimée en termes des congruences entre les coefficients de Fourier des formes modulaires Φ j . On montre comment vérifier ces congruences, et on traite plusieurs...

The distribution of Fourier coefficients of cusp forms over sparse sequences

Huixue Lao, Ayyadurai Sankaranarayanan (2014)

Acta Arithmetica

Let λ f ( n ) be the nth normalized Fourier coefficient of a holomorphic Hecke eigenform f ( z ) S k ( Γ ) . We establish that n x λ f 2 ( n j ) = c j x + O ( x 1 - 2 / ( ( j + 1 ) 2 + 1 ) ) for j = 2,3,4, which improves the previous results. For j = 2, we even establish a better result.

The equidistribution of Fourier coefficients of half integral weight modular forms on the plane

Soufiane Mezroui (2020)

Czechoslovak Mathematical Journal

Let f = n = 1 a ( n ) q n S k + 1 / 2 ( N , χ 0 ) be a nonzero cuspidal Hecke eigenform of weight k + 1 2 and the trivial nebentypus χ 0 , where the Fourier coefficients a ( n ) are real. Bruinier and Kohnen conjectured that the signs of a ( n ) are equidistributed. This conjecture was proved to be true by Inam, Wiese and Arias-de-Reyna for the subfamilies { a ( t n 2 ) } n , where t is a squarefree integer such that a ( t ) 0 . Let q and d be natural numbers such that ( d , q ) = 1 . In this work, we show that { a ( t n 2 ) } n is equidistributed over any arithmetic progression n d mod q .

Currently displaying 121 – 140 of 161