Fonction L des courbes modulaires
We prove non-trivial lower bounds for the growth of ranks of Selmer groups of Hilbert modular forms over ring class fields and over certain Kummer extensions, by establishing first a suitable parity result.
Xian-Jin Li gave a criterion for the Riemann hypothesis in terms of the positivity of a set of coefficients
After Landau’s famous work, many authors contributed to some mean values connected with the Dedekind zetafunction. In this paper, we are interested in the integral power sums of the coefficients of the Dedekind zeta function of a non-normal cubic extension K 3/ℚ, i.e. , where M(m) denotes the number of integral ideals of the field K 3 of norm m and l ∈ ℕ. We improve the previous results for and .
Let be a nonnormal cubic extension which is given by an irreducible polynomial . Denote by the Dedekind zeta-function of the field and the number of integral ideals in with norm . In this note, by the higher integral mean values and subconvexity bound of automorphic -functions, the second and third moment of is considered, i.e., where , are polynomials of degree 1, 4, respectively, is an arbitrarily small number.