Rang moyen de familles de courbes elliptiques et lois de Sato-Tate.
We construct a family of elliptic curves with six parameters, arising from a system of Diophantine equations, whose rank is at least five. To do so, we use the Brahmagupta formula for the area of cyclic quadrilaterals (p³,q³,r³,s³) not necessarily representing genuine geometric objects. It turns out that, as parameters of the curves, the integers p,q,r,s along with the extra integers u,v satisfy u⁶+v⁶+p⁶+q⁶ = 2(r⁶+s⁶), uv = pq, which, by previous work, has infinitely many integer solutions.
We report on a large-scale project to investigate the ranks of elliptic curves in a quadratic twist family, focussing on the congruent number curve. Our methods to exclude candidate curves include 2-Selmer, 4-Selmer, and 8-Selmer tests, the use of the Guinand-Weil explicit formula, and even 3-descent in a couple of cases. We find that rank 6 quadratic twists are reasonably common (though still quite difficult to find), while rank 7 twists seem much more rare. We also describe our inability to find...
We prove a version of the Hilbert Irreducibility Theorem for linear algebraic groups. Given a connected linear algebraic group , an affine variety and a finite map , all defined over a finitely generated field of characteristic zero, Theorem 1.6 provides the natural necessary and sufficient condition under which the set contains a Zariski dense sub-semigroup ; namely, there must exist an unramified covering and a map such that . In the case , is the additive group, we reobtain the...
Let be a number field. Let be a finite set of places of containing all the archimedean ones. Let be the ring of -integers of . In the present paper we consider endomorphisms of of degree , defined over , with good reduction outside . We prove that there exist only finitely many such endomorphisms, up to conjugation by , admitting a periodic point in of order . Also, all but finitely many classes with a periodic point in of order are parametrized by an irreducible curve.
Let be a compact subanalytic surface. This paper shows that, in a suitable sense, there are very few rational points of that do not lie on some connected semialgebraic curve contained in .