Displaying 81 – 100 of 134

Showing per page

The real field with the rational points of an elliptic curve

Ayhan Günaydın, Philipp Hieronymi (2011)

Fundamenta Mathematicae

We consider the expansion of the real field by the group of rational points of an elliptic curve over the rational numbers. We prove a completeness result, followed by a quantifier elimination result. Moreover we show that open sets definable in that structure are semialgebraic.

The tangent complex to the Bloch-Suslin complex

Jean-Louis Cathelineau (2007)

Bulletin de la Société Mathématique de France

Motivated by a renewed interest for the “additive dilogarithm” appeared recently, the purpose of this paper is to complete calculations on the tangent complex to the Bloch-Suslin complex, initiated a long time ago and which were motivated at the time by scissors congruence of polyedra and homology of SL 2 . The tangent complex to the trilogarithmic complex of Goncharov is also considered.

The Tate pairing for Abelian varieties over finite fields

Peter Bruin (2011)

Journal de Théorie des Nombres de Bordeaux

In this expository note, we describe an arithmetic pairing associated to an isogeny between Abelian varieties over a finite field. We show that it generalises the Frey–Rück pairing, thereby giving a short proof of the perfectness of the latter.

Currently displaying 81 – 100 of 134