A Class of Periodic Jacobi-Perron Algorithms in Pure Algebraic Number Fields of Degree n...3.
Page 1 Next
Claude Levesque (1977)
Manuscripta mathematica
Jun-Ichi Tamura (1995)
Acta Arithmetica
Jun-ichi Tamura (1992)
Acta Arithmetica
In this paper, we give transcendental numbers φ and ψ such that (i) both φ and ψ have explicit g-adic expansions, and simultaneously, (ii) the vector has an explicit expression in the Jacobi-Perron algorithm (cf. Theorem 1). Our results can be regarded as a higher-dimensional version of some of the results in [1]-[5] (see also [6]-[8], [10], [11]). The numbers φ and ψ have some connection with algebraic numbers with minimal polynomials x³ - kx² - lx - 1 satisfying (1.1) k ≥ l ≥0, k + l ≥ 2 (k,l...
Walter Philipp (1976)
Acta Arithmetica
Jingcheng Tong (1991)
Monatshefte für Mathematik
Richard B. Lakein (1975)
Journal für die reine und angewandte Mathematik
Zongduo Dai, Ping Wang, Kunpeng Wang, Xiutao Feng (2007)
Acta Arithmetica
Assaf, Sami, Chen, Li-Chung, Cheslack-Postava, Tegan, Cooper, Benjamin, Diesl, Alexander, Garrity, Thomas, Lepinski, Mathew, Schuyle, Adam (2005)
Integers
Norman Richert (1990)
Acta Arithmetica
Pierre Stambul (1997)
Acta Arithmetica
Kopetzky, Hans Günther, Schnitzer, Franz Josef (1995)
Mathematica Pannonica
J. Wolfskill (1984)
Journal für die reine und angewandte Mathematik
A. Rockett, P. Szüsz (1986)
Acta Arithmetica
Cor Kraaikamp (1991)
Acta Arithmetica
Komatsu, Takao (2007)
Integers
Bohuslav Diviš, Břetislav Novák (1971)
Commentationes Mathematicae Universitatis Carolinae
H.C. Cheng, A.D. Pollington (1981)
Manuscripta mathematica
Weiqun Hu (2000)
Acta Arithmetica
Arne J. Brentjes (1981)
Journal für die reine und angewandte Mathematik
Christian Drouin (2014)
Journal de Théorie des Nombres de Bordeaux
A Lagrange Theorem in dimension 2 is proved in this paper, for a particular two dimensional continued fraction algorithm, with a very natural geometrical definition. Dirichlet type properties for the convergence of this algorithm are also proved. These properties proceed from a geometrical quality of the algorithm. The links between all these properties are studied. In relation with this algorithm, some references are given to the works of various authors, in the domain of multidimensional continued...
Page 1 Next