Méthodes algébriques et démonstrations de transcendance locales.
1. Introduction. Dans un article célèbre, D. H. Lehmer posait la question suivante (voir [Le], §13, page 476): «The following problem arises immediately. If ε is a positive quantity, to find a polynomial of the form: where the a’s are integers, such that the absolute value of the product of those roots of f which lie outside the unit circle, lies between 1 and 1 + ε (...). Whether or not the problem has a solution for ε < 0.176 we do not know.» Cette question, toujours ouverte, est la source...
We establish a new multiplicity lemma for solutions of a differential system extending Ramanujan’s classical differential relations. This result can be useful in the study of arithmetic properties of values of Riemann zeta function at odd positive integers (Nesterenko, 2011).
Dimostriamo che la costante che regola la distribuzione dei cosiddetti self numbers è un numero trascendente. Ciò precisa un risultato dimostrato in un precedente articolo dal medesimo titolo, ossia che tale costante sia irrazionale. Il metodo fa uso di una curiosa formula per l'espansione 2-adica di tale numero (già utilizzata nell'altro lavoro) e del profondo Teorema del Sottospazio.
H. Sharif et C. Woodcock donnent dans [26] une caractérisation des séries formelles à coefficients dans un corps de caractéristique non nulle et algébriques sur ; ils en déduisent simplement l’algébricité du produit de Hadamard ou des diagonales de séries algébriques. (Ces résultats ont aussi été obtenus par T. Harase [14]). Nous donnons ici une démonstration légèrement différente de leur théorème et montrons comment on peut en déduire une généralisation intéressante de la notion de -substitution...