Page 1

Displaying 1 – 7 of 7

Showing per page

Exponents of Diophantine Approximation and Sturmian Continued Fractions

Yann Bugeaud, Michel Laurent (2005)

Annales de l’institut Fourier

Let ξ be a real number and let n be a positive integer. We define four exponents of Diophantine approximation, which complement the exponents w n ( ξ ) and w n * ( ξ ) defined by Mahler and Koksma. We calculate their six values when n = 2 and ξ is a real number whose continued fraction expansion coincides with some Sturmian sequence of positive integers, up to the initial terms. In particular, we obtain the exact exponent of approximation to such a continued fraction ξ by quadratic surds.

Currently displaying 1 – 7 of 7

Page 1