Suites uniformément distribuées et fonctions faiblement presque-périodiques
étant une suite de nombres réels, soit l’ensemble normal associé. Pour , nous étudions la question : existe-t-il une suite à valeurs dans un intervalle borné telle que ? Dans l’affirmative, nous cherchons alors à minimiser la longueur de l’intervalle . Dans les cas les plus simples, où , ce problème se ramène à minimiser le degré de , avec la contrainte « a tous ses coefficients positifs», pour des polynômes de type très particulier associés aux ensembles .
Dans cet article, on s’intéresse au problème suivant. Soient un nombre premier, et . Quel est le plus grand entier tel que pour toutes paires de sous-ensembles disjoints de vérifiant , il existe tel que si et si ? Ce problème correspond à l’étude de la complexité de certaines familles d’ensembles pseudo-aléatoires. Dans un premier temps, nous rappelons la définition de cette complexité et resituons le contexte des ensembles pseudo-aléatoires. Ensuite, nous exposons les différents...