Displaying 221 – 240 of 248

Showing per page

Une approche hilbertienne de l’hypothèse de Riemann généralisée

Anne de Roton (2006)

Bulletin de la Société Mathématique de France

En généralisant dans [De Roton] le théorème de Beurling et Nyman à la classe de Selberg, nous avons reformulé l’hypothèse de Riemann généralisée en terme d’un problème d’approximation. Nous poursuivons ici ce travail de généralisation par l’étude d’une distance liée à ce problème. Nous donnons une minoration de cette distance, ce qui constitue une extension du travail de Burnol [7] et de celui de Báez-Duarte, Balazard, Landreau et Saias [2], travail qui concernait la fonction ζ de Riemann et que...

[unknown]

Rob de Jeu, Tejaswi Navilarekallu (0)

Annales de l’institut Fourier

Upper bounds for the density of universality. II

Jörn Steuding (2005)

Acta Mathematica Universitatis Ostraviensis

We prove explicit upper bounds for the density of universality for Dirichlet series. This complements previous results [15]. Further, we discuss the same topic in the context of discrete universality. As an application we sharpen and generalize an estimate of Reich concerning small values of Dirichlet series on arithmetic progressions in the particular case of the Riemann zeta-function.

Valeurs zêta multiples. Une introduction

Michel Waldschmidt (2000)

Journal de théorie des nombres de Bordeaux

Soit s ̲ = ( s 1 , , s k ) un k -uplet d’entiers positifs avec k 1 . Pour s 1 2 , la série n 1 > > n k 1 n 1 - s k n k - s k converge et sa somme est notée ζ ( s ̲ ) . Dans le cas k = 1 il s’agit simplement des valeurs de la fonction zêta de Riemann aux entiers positifs. Quelles relations algébriques existent entre ces nombres ? Le produit ζ ( s ' ) ζ ( s ' ' ) de deux valeurs de fonctions zêta multiples est une combinaison linéaire de ζ ( s ̲ ) , comme on le voit facilement en multipliant les séries : c’est le produit de mélange lié aux séries. D’autre part une autre expression pour le nombre ζ ( s ̲ ) est...

Zeta functions for the Riemann zeros

André Voros (2003)

Annales de l’institut Fourier

A family of Zeta functions built as Dirichlet series over the Riemann zeros are shown to have meromorphic extensions in the whole complex plane, for which numerous analytical features (the polar structures, plus countably many special values) are explicitly displayed.

Zeta functions of Jordan algebras representations

Dehbia Achab (1995)

Annales de l'institut Fourier

This work is about a generalization of Kœcher’s zeta function. Let V be an Euclidean simple Jordan algebra of dimension n and rank m , E an Euclidean space of dimension N , ϕ a regular self-adjoint representation of V in E , Q the quadratic form associated to ϕ , Ω the symmetric cone associated to V and G ( Ω ) its automorphism group G ( Ω ) = { g G L ( V ) | g ( Ω ) = Ω } . ( H 1 ) Assume that V and E have Q -structures V Q and E Q respectively and ϕ is defined over Q . Let L be a lattice in E Q . The zeta series associated to ϕ and L is defined by ζ L ( s ) = l Γ L ' [ det ( Q ( l ) ) ] - s , s C where L ' = { l L | det ( Q ( l ) ) 0 } ,...

Currently displaying 221 – 240 of 248