On Siegel Zeros of Hecke-Landau Zeta-Functions.
Jürgen, Lodemann, Martin Hinz (1994)
Monatshefte für Mathematik
Martin, Roland (1995)
Electronic Research Announcements of the American Mathematical Society [electronic only]
Erika Damian, Andrea Lucchini (2006)
Rendiconti del Seminario Matematico della Università di Padova
Yuk-Kam Lau (2002)
Acta Arithmetica
Juan Arias de Reyna, Jan van de Lune (2014)
Acta Arithmetica
We introduce the real valued real analytic function κ(t) implicitly defined by (κ(0) = -1/2). By studying the equation κ(t) = n (without making any unproved hypotheses), we show that (and how) this function is closely related to the (exact) position of the zeros of Riemann’s ζ(s) and ζ’(s). Assuming the Riemann hypothesis and the simplicity of the zeros of ζ(s), it follows that the ordinate of the zero 1/2 + iγₙ of ζ(s) is the unique solution to the equation κ(t) = n.
Takumi Noda (2015)
Acta Arithmetica
Zeta-functions associated with modified Bessel functions are introduced as ordinary Dirichlet series whose coefficients are J-Bessel and K-Bessel functions. Integral representations, transformation formulas, a power series expansion involving the Riemann zeta-function and a recurrence formula are given. The inverse Laplace transform of Weber's first exponential integral is the basic tool to derive the integral representations. As an application, we give a new proof of the Fourier series expansion...
S. Chowla (1934)
Mathematische Zeitschrift
Aleksandar Ivić (1993)
Publications de l'Institut Mathématique
J. Kaczorowski, A. Perelli (2008)
Acta Arithmetica
Kohji Matsumoto (1991)
Acta Arithmetica
A. Laurinčikas (1998)
Acta Arithmetica
Anne de Roton (2007)
Acta Arithmetica
Kui Liu (2014)
Acta Arithmetica
Rong Ma, Yuan Yi, Yulong Zhang (2010)
Czechoslovak Mathematical Journal
Let be an integer, let denote a Dirichlet character modulo For any real number we define the generalized Dirichlet -functions where with and both real. They can be extended to all by analytic continuation. In this paper we study the mean value properties of the generalized Dirichlet -functions especially for and , and obtain two sharp asymptotic formulas by using the analytic method and the theory of van der Corput.
Ben Lichtin (1991)
Compositio Mathematica
Massimiliano Patassini (2013)
Rendiconti del Seminario Matematico della Università di Padova
Henryk Iwaniec (1990)
Journal de théorie des nombres de Bordeaux
Stephan Baier (2004)
Acta Arithmetica
Claude Gauthier (2006)
Open Mathematics
We apply a method of Euler to algebraic extensions of sets of numbers with compound additive inverse which can be seen as quotient rings of R[x]. This allows us to evaluate a generalization of Riemann’s zeta function in terms of the period of a function which generalizes the function sin z. It follows that the functions generalizing the trigonometric functions on these sets of numbers are not periodic.
Bogdan Szydło (2007)
Acta Arithmetica