Displaying 141 – 160 of 248

Showing per page

On the exact location of the non-trivial zeros of Riemann's zeta function

Juan Arias de Reyna, Jan van de Lune (2014)

Acta Arithmetica

We introduce the real valued real analytic function κ(t) implicitly defined by e 2 π i κ ( t ) = - e - 2 i ϑ ( t ) ( ζ ' ( 1 / 2 - i t ) ) / ( ζ ' ( 1 / 2 + i t ) ) (κ(0) = -1/2). By studying the equation κ(t) = n (without making any unproved hypotheses), we show that (and how) this function is closely related to the (exact) position of the zeros of Riemann’s ζ(s) and ζ’(s). Assuming the Riemann hypothesis and the simplicity of the zeros of ζ(s), it follows that the ordinate of the zero 1/2 + iγₙ of ζ(s) is the unique solution to the equation κ(t) = n.

On the functional properties of Bessel zeta-functions

Takumi Noda (2015)

Acta Arithmetica

Zeta-functions associated with modified Bessel functions are introduced as ordinary Dirichlet series whose coefficients are J-Bessel and K-Bessel functions. Integral representations, transformation formulas, a power series expansion involving the Riemann zeta-function and a recurrence formula are given. The inverse Laplace transform of Weber's first exponential integral is the basic tool to derive the integral representations. As an application, we give a new proof of the Fourier series expansion...

On the mean value of the generalized Dirichlet L -functions

Rong Ma, Yuan Yi, Yulong Zhang (2010)

Czechoslovak Mathematical Journal

Let q 3 be an integer, let χ denote a Dirichlet character modulo q . For any real number a 0 we define the generalized Dirichlet L -functions L ( s , χ , a ) = n = 1 χ ( n ) ( n + a ) s , where s = σ + i t with σ > 1 and t both real. They can be extended to all s by analytic continuation. In this paper we study the mean value properties of the generalized Dirichlet L -functions especially for s = 1 and s = 1 2 + i t , and obtain two sharp asymptotic formulas by using the analytic method and the theory of van der Corput.

On the periodicity of trigonometric functions generalized to quotient rings of R[x]

Claude Gauthier (2006)

Open Mathematics

We apply a method of Euler to algebraic extensions of sets of numbers with compound additive inverse which can be seen as quotient rings of R[x]. This allows us to evaluate a generalization of Riemann’s zeta function in terms of the period of a function which generalizes the function sin z. It follows that the functions generalizing the trigonometric functions on these sets of numbers are not periodic.

Currently displaying 141 – 160 of 248