More than 41% of the zeros of the zeta function are on the critical line
We prove a conjecture due to Goncharov and Manin which states that the periods of the moduli spaces of Riemann spheres with marked points are multiple zeta values. We do this by introducing a differential algebra of multiple polylogarithms on and proving that it is closed under the operation of taking primitives. The main idea is to apply a version of Stokes’ formula iteratively to reduce each period integral to multiple zeta values. We also give a geometric interpretation of the double shuffle...
Granville and Soundararajan have recently suggested that a general study of multiplicative functions could form the basis of analytic number theory without zeros of L-functions; this is the so-called pretentious view of analytic number theory. Here we study multiplicative functions which arise from the arithmetic of number fields. For each finite Galois extension K/ℚ, we construct a natural class of completely multiplicative functions whose values are dictated by Artin symbols, and we show that...