The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 181 – 200 of 498

Showing per page

On some problems of Mąkowski-Schinzel and Erdős concerning the arithmetical functions ϕ and σ

Florian Luca, Carl Pomerance (2002)

Colloquium Mathematicae

Let σ(n) denote the sum of positive divisors of the integer n, and let ϕ denote Euler's function, that is, ϕ(n) is the number of integers in the interval [1,n] that are relatively prime to n. It has been conjectured by Mąkowski and Schinzel that σ(ϕ(n))/n ≥ 1/2 for all n. We show that σ(ϕ(n))/n → ∞ on a set of numbers n of asymptotic density 1. In addition, we study the average order of σ(ϕ(n))/n as well as its range. We use similar methods to prove a conjecture of Erdős that ϕ(n-ϕ(n)) < ϕ(n)...

On sums of two cubes: an Ω₊-estimate for the error term

M. Kühleitner, W. G. Nowak, J. Schoissengeier, T. D. Wooley (1998)

Acta Arithmetica

The arithmetic function r k ( n ) counts the number of ways to write a natural number n as a sum of two kth powers (k ≥ 2 fixed). The investigation of the asymptotic behaviour of the Dirichlet summatory function of r k ( n ) leads in a natural way to a certain error term P k ( t ) which is known to be O ( t 1 / 4 ) in mean-square. In this article it is proved that P ( t ) = Ω ( t 1 / 4 ( l o g l o g t ) 1 / 4 ) as t → ∞. Furthermore, it is shown that a similar result would be true for every fixed k > 3 provided that a certain set of algebraic numbers contains a sufficiently...

Currently displaying 181 – 200 of 498