Displaying 441 – 460 of 1791

Showing per page

Exceptional sets in Waring's problem: two squares and s biquadrates

Lilu Zhao (2014)

Acta Arithmetica

Let R s ( n ) denote the number of representations of the positive number n as the sum of two squares and s biquadrates. When s = 3 or 4, it is established that the anticipated asymptotic formula for R s ( n ) holds for all n X with at most O ( X ( 9 - 2 s ) / 8 + ε ) exceptions.

Exotic approximate identities and Maass forms

Fernando Chamizo, Dulcinea Raboso, Serafín Ruiz-Cabello (2013)

Acta Arithmetica

We obtain some approximate identities whose accuracy depends on the bottom of the discrete spectrum of the Laplace-Beltrami operator in the automorphic setting and on the symmetries of the corresponding Maass wave forms. From the geometric point of view, the underlying Riemann surfaces are classical modular curves and Shimura curves.

Expansions of binary recurrences in the additive base formed by the number of divisors of the factorial

Florian Luca, Augustine O. Munagi (2014)

Colloquium Mathematicae

We note that every positive integer N has a representation as a sum of distinct members of the sequence d ( n ! ) n 1 , where d(m) is the number of divisors of m. When N is a member of a binary recurrence u = u n 1 satisfying some mild technical conditions, we show that the number of such summands tends to infinity with n at a rate of at least c₁logn/loglogn for some positive constant c₁. We also compute all the Fibonacci numbers of the form d(m!) and d(m₁!) + d(m₂)! for some positive integers m,m₁,m₂.

Extension of Estermann’s theorem to Euler products associated to a multivariate polynomial

Ludovic Delabarre (2013)

Bulletin de la Société Mathématique de France

Given a multivariate polynomial h X 1 , , X n with integral coefficients verifying an hypothesis of analytic regularity (and satisfying h ( 0 ) = 1 ), we determine the maximal domain of meromorphy of the Euler product p prime h p - s 1 , , p - s n and the natural boundary is precisely described when it exists. In this way we extend a well known result for one variable polynomials due to Estermann from 1928. As an application, we calculate the natural boundary of the multivariate Euler products associated to a family of toric varieties.

Currently displaying 441 – 460 of 1791