Displaying 1461 – 1480 of 1791

Showing per page

Sur un problème de Rényi et Ivić concernant les fonctions de diviseurs de Piltz

Rimer Zurita (2013)

Acta Arithmetica

Let Ω(n) and ω(n) denote the number of distinct prime factors of the positive integer n, counted respectively with and without multiplicity. Let d k ( n ) denote the Piltz function (which counts the number of ways of writing n as a product of k factors). We obtain a precise estimate of the sum n x , Ω ( n ) - ω ( n ) = q f ( n ) for a class of multiplicative functions f, including in particular f ( n ) = d k ( n ) , unconditionally if 1 ≤ k ≤ 3, and under some reasonable assumptions if k ≥ 4. The result also applies to f(n) = φ(n)/n (where φ is the totient...

Sur un problème extrémal en arithmétique

Gérald Tenenbaum (1987)

Annales de l'institut Fourier

Soit N un nombre entier. On développe ici une méthode générale fournissant un équivalent asymptotique de la somme “courte” d | N x d x + y 1 sous certaines conditions relatives à N , x , y . Plusieurs applications sont traitées, notamment la preuve d’une conjecture d’Erdös relative à la répartition des diviseurs de k !

Sur une application de la formule de Selberg-Delange

F. Ben Saïd, J.-L. Nicolas (2003)

Colloquium Mathematicae

E. Landau has given an asymptotic estimate for the number of integers up to x whose prime factors all belong to some arithmetic progressions. In this paper, by using the Selberg-Delange formula, we evaluate the number of elements of somewhat more complicated sets. For instance, if ω(m) (resp. Ω(m)) denotes the number of prime factors of m without multiplicity (resp. with multiplicity), we give an asymptotic estimate as x → ∞ of the number of integers m satisfying 2 ω ( m ) m x , all prime factors of m are congruent...

Currently displaying 1461 – 1480 of 1791