Displaying 101 – 120 of 148

Showing per page

Ramification in quartic cyclic number fields K generated by x 4 + p x 2 + p

Julio Pérez-Hernández, Mario Pineda-Ruelas (2021)

Mathematica Bohemica

If K is the splitting field of the polynomial f ( x ) = x 4 + p x 2 + p and p is a rational prime of the form 4 + n 2 , we give appropriate generators of K to obtain the explicit factorization of the ideal q 𝒪 K , where q is a positive rational prime. For this, we calculate the index of these generators and integral basis of certain prime ideals.

Some quartic number fields containing an imaginary quadratic subfield

Stéphane R. Louboutin (2011)

Colloquium Mathematicae

Let ε be a quartic algebraic unit. We give necessary and sufficient conditions for (i) the quartic number field K = ℚ(ε) to contain an imaginary quadratic subfield, and (ii) for the ring of algebraic integers of K to be equal to ℤ[ε]. We also prove that the class number of such K's goes to infinity effectively with the discriminant of K.

Sur le groupe des unités de corps de nombres de degré 2 et 4

M’hammed Ziane (2007)

Journal de Théorie des Nombres de Bordeaux

Nous déterminons sous certaines hypothèses, un système fondamental d’unités du corps non pur K = ( ω ) et de son sous-corps quadratique, où ω est solution du polynôme f ( X ) = X 4 + d - 2 M 6 X 2 - M 4 , avec M 6 = D 6 + 6 D 4 d + 9 D 2 d 2 + 2 d 3 , M 4 = D 4 + 4 D 2 d + 2 d 2 , d | D , d , D , non nuls.

Currently displaying 101 – 120 of 148