Displaying 121 – 140 of 400

Showing per page

Fundamental units for orders of unit rank 1 and generated by a unit

Stéphane R. Louboutin (2016)

Banach Center Publications

Let ε be an algebraic unit for which the rank of the group of units of the order ℤ[ε] is equal to 1. Assume that ε is not a complex root of unity. It is natural to wonder whether ε is a fundamental unit of this order. It turns out that the answer is in general yes, and that a fundamental unit of this order can be explicitly given (as an explicit polynomial in ε) in the rare cases when the answer is no. This paper is a self-contained exposition of the solution to this problem, solution which was...

Fundamental units in a family of cubic fields

Veikko Ennola (2004)

Journal de Théorie des Nombres de Bordeaux

Let 𝒪 be the maximal order of the cubic field generated by a zero ε of x 3 + ( - 1 ) x 2 - x - 1 for , 3 . We prove that ε , ε - 1 is a fundamental pair of units for 𝒪 , if [ 𝒪 : [ ε ] ] / 3 .

Groupe des unités pour des extensions diédrales complexes de degré 10 sur Q

Omar Kihel (2001)

Journal de théorie des nombres de Bordeaux

Le but de cet article est de montrer qu’un ensemble quelconque de quatre racines des polynômes quintiques p ( x ) exhibés par H . Darmon forme sous certaines conditions un système fondamental d’unités de la fermeture normale du corps 𝐐 ( θ ) p ( θ ) = 0 .

Currently displaying 121 – 140 of 400